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The assessment of historical data is important to understand long-term changes in
the marine environment. Whereas time series analyses based on monitoring data
typically span one or two decades, this work aimed to integrate 40 years of monitoring
and research data on polychlorinated biphenyls (PCBs) and metals in the Belgian
Part of the North Sea (BPNS). Multiple challenges were encountered: sampling
locations changed over time, different analytical methods were applied, different grain
size fractions were analyzed, appropriate co-factors were not always analyzed, and
measurement uncertainties were not always indicated. These issues hampered the
use of readily available, highly standardized trend modeling approaches like those
proposed by regional sea conventions such as OSPAR, named after the Oslo and
Paris conventions.Therefore, we applied alternative approaches, allowing us to include
most older historical data that have been obtained during the nineteen seventies and
eighties. Our approach included reproducible and quality controlled procedures from
data collection up to data assessment. It included spatial clustering, data normalization
and parametric linear mixed effect modeling. A Ward hierarchical clustering was applied
on recently obtained contaminant data, as the basis for a spatial division of the BPNS
into five distinct areas with different contamination profiles. To minimize the risk of
normalization errors for the metal data analyses, four normalization approaches were
applied and mutually compared: granulometric and nickel (Ni) normalization, next to
two hybrid normalization methods combining aluminum (Al) and iron (Fe) normalization.
The long-term models revealed decreasing trends for most metals, except zinc (Zn) for
which three out of four models showed increasing concentrations in all five zones of the
BPNS. Offshore sediments contained the lowest normalized mercury (Hg) and cadmium
(Cd) concentrations but high arsenic (As) concentrations. Trend analysis revealed a
strong decrease in PCB concentrations in the nineteen eighties and nineties, followed
by a slight increase over the last decade. The extended timeframe for contaminant
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assessment, as applied in this study, is of added value for scientists and policy makers,
as the approach allows to detect trends and effects of anthropogenic activities within
the marine environment within a broad perspective.

Keywords: sediment contamination, normalization, long-term trend analysis, PCB, metals, BPNS

INTRODUCTION

To evaluate the contamination status of the marine environment,
it is important to compare actual concentrations of pollutants
with defined values below which no adverse effect is expected, but
also to assess and understand how contamination evolves over
time. Contaminant trend assessments increase our knowledge on
long term human impacts on the marine environment and allow
predictions of the near future contamination status. Publications
on trend analyses of chemical contamination within European
marine sediments consider two approaches: data analysis of
monitoring samples repeatedly taken over a long-term period
vs. analysis of samples from different depths taken from single
sediment cores (e.g., Cundy et al., 2003; Roose et al., 2005;
Traven, 2013; Assefa et al., 2014; Everaert et al., 2014; Mil-
Homens et al., 2014; Sobek et al., 2015; De Witte et al.,
2016; Wafo et al., 2016; Everaert et al., 2017). Typically, trend
analyses on monitoring data span at most one to two decades.
Sediment core analyses may span a longer period and offer
the advantage that no changes in analytical method have to
be considered (Yake, 2001), although measured concentrations
may be influenced by contaminant degradation and sediment
disturbance (Cundy et al., 2003).

To assess the chemical status within the Nord-East Atlantic,
the OSPAR commission, named after the Oslo and Paris
conventions, continuously evaluates trends in chemical
concentrations in marine sediments and biota as well as the
potential of current mitigation measures to reach background
assessment concentrations (BAC) (e.g., OSPAR, 2017). BAC
values indicate whether contamination levels are “near
background” (for naturally occurring substances) or “close
to zero” (for man-made substances) (OSPAR, 2009). For
these assessments, an eminent procedure is applied with a
high degree of harmonization and standardization. In brief,
the OSPAR assessment on marine sediment contaminants
includes sampling guidelines as well as guidelines on the
analysis protocols with related quality assessments (OSPAR,
2018, 2019). The data assessment includes a normalization step,
taking into account the measurement uncertainties, followed
by a trend analysis based on a linear model (for a period of
5–6 years) or based on a smooth model (for data spanning 7
years or more). Data with high uncertainty are excluded from
the assessment or their weight is reduced. A normalization
step is essential, since contaminant concentrations in marine
sediments depend on the pollution level but also on the
natural variability in sediment granulometry (i.e., grain size
distribution) and mineralogy (i.e., mineralogical composition).
Fine sediments, which are mainly composed of clay minerals,
present high binding capacity leading to higher contaminant

concentrations, compared to coarse sediments (Loring, 1991).
Two normalization approaches are widely applied: granulometric
and geochemical normalization. The first approach consists of
sieving and isolating the clay fraction, i.e., the <63 µm fraction
which is the most widespread monitoring fraction used, to
reduce the differences in granulometric composition (OSPAR,
2018). The second approach relies on the use of a proxy to reflect
the binding capacity of the sediment in function of its mineralogy
and grain size. This proxy or co-factor has to be a conservative
element, like Aluminum (Al), which reflects the clay mineral
content and whose content is unaffected by other contaminant
inputs (Herut and Sandler, 2006).

For the Belgian part of the North Sea (BPNS), monitoring
of hazardous substances started in 1971 with the project named
“Project Mer-projekt zee” (PMPZ), where PCBs, pesticides and
metals were analyzed in marine waters, sediments and biota.
Since then, a long, more or less continuous series of research
and monitoring projects has been conducted, all reporting on
the chemical contamination level of the BPNS. The recent
4DEMON (4 Decades of Belgian Marine Monitoring) project has
compiled a long term dataset on contamination, eutrophication
and acidification on the BPNS since the 1970s (Lagring et al.,
2018), comprising as much data as possible, gathered and rescued
from the multiple projects and data originators over time. The
integrated 4DEMON dataset offers a unique set of contamination
data in marine sediments.

To our knowledge, no chemical trend analysis spanning a four
decades period has ever been published within peer reviewed
publications. A major problem is that by incorporating historical
data from different data originators, we encountered multiple
issues, which hampered the use of existing assessment methods.
Over the 40 years’ time span, the sampling frequency of marine
sediment monitoring has changed and sampling locations were
altered, which inhibited a 40 years trend assessment on individual
locations. A scientifically based spatial clustering was needed to
combine data of multiple locations and to allow for a time series
analysis of hazardous substances in spatially (a priori) defined
zones of the BPNS.

A second issue is the variability of grain size fractions (<37,
<63, <500, <2,000, <10,000 µm) on which contaminant
analyses have been performed, emphasizing the need for
other data normalization procedures besides grain size
normalization. OSPAR assessments use aluminum (Al)
for the evaluation of metals, as the metal content of fine
sediments is related to major elements of the clay fraction
such as Al (OSPAR, 2018). For organic contaminants,
Total Organic Carbon (TOC) is used as co-factor, since
organic contaminants have strong affinity for organic
carbon (OSPAR, 2018). Within the 4DEMON dataset, Al
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was found to be rarely measured in the seventies, hampering its
applicability when trying to retain as much metal concentration
data as possible over the four decades. Therefore, in the
present study alternative normalization procedures have been
developed and applied.

Thirdly, the applied analytical methods have changed over
time, which most likely results in shifts in the measured
contaminant concentrations, partly masking the real trends. This
may be overcome by analyzing samples in duplo by means of
both old and new methods (West et al., 2017). However, this
approach was not applicable to our datasets, as old measurement
and extraction instrumentation were no longer operational, and
samples were no longer available. Therefore, a mathematical
extrapolation and correction (modeling) solution was developed.
It is important to note that changes in co-factor analysis methods
may equally induce contaminant concentration shifts. Finally, no
or little information was available on measurement uncertainty
for the historical contaminant data recovered from different
projects, prohibiting the integration of measurement uncertainty
in the applied models.

Given these constraints, the current procedures for time
trend analysis as applied by OSPAR or within other peer-
reviewed publications could not be used for the 4DEMON
dataset. This paper presents a unique approach to assess more
than four decades of PCB and metals monitoring data, in
which spatial clustering, alternative normalization approaches
and parametric trend modeling are combined to gain insight in
long-term trends in PCB and metal contamination in marine
sediments of the BPNS. Our approach included reproducible
and quality controlled procedures from data collection up to
data assessment. Accuracy is reached by applying tailored made
quality control algorithms based on quality flags and acceptance
thresholds as well as established statistical algorithms based on
statistical significances.

MATERIALS AND METHODS

To develop long term trends on metals and PCBs in the
marine environment of the BPNS, a multi-step approach was
applied, including data collection and data quality control, spatial
clustering of sampling locations, development and validation of
normalization approaches as well as the generation of linear
mixed effect models. A flow chart of this process is presented
within Figure 1.

Data Collection and Quality Control
Four datasets have been used: (Dataset 1- DS1) the main dataset
for trend modeling as compiled during the 4DEMON project,
spanning four decades (1971–2015) of marine monitoring data
at the BPNS; (Dataset 2- DS2) a subset, spanning the period
2007–2011, which is used for the spatial clustering; (Dataset 3-
DS3) a number of fractionized sediment samples taken in March
2015, to determine optimal co-factors; and (Dataset 4- DS4) a
number of pure sand samples, gathered in the most offshore
zone of the BPNS in the period 2008–2014, to determine the
normalization constants.

The main dataset (DS1) contains PCB and metal data
originating from the pioneering PMPZ project (1971–1975),
which was continued within the Monitoring Master Plan for the
North Sea (MMP_NS; 1978–1983), and the still ongoing OSPAR
monitoring program (MONIT_SED, 1979–2015). Contaminant
data were further obtained from several monitoring projects
related to the effects of human activities at sea, such as dredge
spoil disposal and sand extraction (Monit_Sludge, 2004-present),
and from a Ph.D. on metal contamination at the BPNS and the
Scheldt Estuary (Van Alsenoy, 1993). Other short term project
data were included in the 4DEMON digitalization process,
but were not used in the current trend analyses due to data
comparability restrictions. To be fit for inclusion in the data
assessment, only metal data obtained by a total digestion method
were retained. Further, only sediment samples collected by a Van
Veen grab were considered and project data were not withheld in
case not all relevant metadata could be retrieved. Supplementary
Table 1 provides an overview of the number of records, projects
and periods covered that have been used for the trend analyses.
The total dataset is digitally available (4DEMON, 2020).

After compilation of the main dataset, metadata and
concentration values were quality checked before performing
any statistical analyses. Station locations and analysis methods
were carefully verified and corrected when required. For each
contaminant, automated and visual screening were performed
to identify suspect values. Unrealistic out-of-range as well as
zero, negative and missing values were discarded from the final
dataset. Values below detection limits were set to detection
limit values, duplicates were removed and sample replicates
were aggregated by average. The final dataset for the long-term
trend assessment comprised 1615 sediment samples taken at 162
sampling locations in the BPNS (Figure 2A). The PCB time
series counted at minimum 450 values for CB153 and around 950
values for other PCBs. Metals time series contained between 994
and 1469 records.

Spatial clustering was based on a small subset of the
4DEMON contaminant dataset (DS2), containing 443 samples,
for which concentrations of PCBs and metals from the sieved
fraction 0–63 µm were available. We assume that over such a
short period, the contaminant concentrations did not change
significantly over time.

To select co-factors following the procedure of Smedes and
Nummerdor (2003), sediment samples taken at nine locations
within the BPNS in March 2015 with a Van Veen grab (0.1 m2)
were used (DS 3) (Figure 2B). Based on the mud (grain size
<63 µm), sand (grain size between 63 and 2000 µm) and gravel
(grain size >2000 µm) content, samples were classified as mud
or sandy mud (>50% grain size <63 µm), muddy sand (10–
50% grain size <63 µm) and sand (<10% grain size <63 µm).
This categorization was proposed by Rees et al. (2007) as adopted
from Folk (1954).

For the determination of normalization constants, three
locations at the outer border of the BPNS (W08, W09 and
W10) were selected that may be considered as pure sand
locations, all having less than 0.01% in the <63 µm fraction
(Figure 2B). Metal concentrations from those unsieved samples
were considered (DS4).
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FIGURE 1 | Flow chart of the data process procedures including (1) development of normalization approaches (left), compilation of quality checked datasets (center)
and trend modeling (right). Actions are given in uncoloured textboxes. Samples, datasets and results are presented in orange textboxes.

FIGURE 2 | (A) Overview of all sampling locations of the main dataset DS1 (1971–2015). (B) Overview of samples of DS3 used as equally polluted samples in the
co-factor analysis (March 2015) and the pure sand samples (W08, W09, W10) of DS4 used for background normalization constant determination (2008–2014).
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Spatial Clustering
Throughout four decades of marine monitoring at the BPNS,
sampling locations varied over time. To assess real long-term
trends in PCB and metal concentrations, we aggregated diverse
sampling locations into spatial cluster zones, each characterized
by specific contamination and sediment profiles.

First, a Ward hierarchical clustering (Ward, 1963) was applied
on the samples of DS2 (the 2007–2011 subset; <63 µm sediment
fraction), based on center-scaled concentrations of PCBs and
metals with Euclidean distances as similarity measure, using
R-function hclust (R Core Team, 2018).

In a second step, a Principal Component Analysis (PCA)
was performed, which reduces the number of variables into
new uncorrelated variables (principal components). This gives
additional information on associated contaminant patterns,
where closely positioned variables are more correlated. The PCA
was applied on center-scaled PCB and metal concentrations from
DS2, using R software function PCA from FactoMineR package
(Lê et al., 2008).

Finally, we combined the information from the PCA with the
Ward clustering group characteristics and known information on
sedimentology (Hademenos et al., 2018) to delineate five spatial
zones in which the sampling locations from the main dataset
could be grouped for the overall trend analyses.

Normalization
Over 40 years monitoring, contaminant concentrations
originated from different sediment fractions with different
grain sizes. Moreover, parameters currently used as co-
factors were not always analyzed, stressing the need for
alternative normalization procedures. Within a first model,
only granulometric normalization was applied, i.e., taking into

FIGURE 3 | Regression between the contaminant C and the cofactor N
(redrafted from Smedes et al., 1997, with permission), with CS and NS the
measured contaminant and co-factor content, CSS and NSS the standard
reference contaminant and co-factor content, and Cx and Nx the contaminant
and co-factor content in pure sand.

account contaminant concentrations measured on the <63
µm fraction. The other approaches are based on geochemical
normalization. The use of a co-factor for normalization
purposes assumes that the concentration of the studied
contaminant changes proportionally to the co-factor (the
normalizing element) in sediments that are equally polluted,
as its concentration varies with changing mineralogy and
particle size (Loring, 1991). The linear regression between
contaminant and co-factor concentration is illustrated in
Figure 3 (Smedes et al., 1997).

Cs and Ns represent the measured contaminant and co-factor
contents, whereas Cx and Nx represent the contaminant and co-
factor contents in pure sand, respectively. Cx and Nx represent
the “pivot point” from which all sample sets will originate,
regardless their contamination level (OSPAR, 2015).

dC
dN
=

Cs − Cx

Ns−Nx
(1)

The extrapolation to the standard reference co-factor content Nss
follows the same slope, resulting in a general expression for the
standardized reference contaminant concentration CSS:

Css = (Cs−Cx)
Nss−Nx

Ns−Nx
+Cx (2)

Normalization is performed toward a “standard seafloor”
with co-factor content Nss. The resulting standardized
contaminant levels CSS can be compared irrespectively of
their granular distribution and mineral composition, meaning
that samples with the same CSS value are equally polluted
(Smedes and Nummerdor, 2003).

When the measured co-factor value Ns is similar to its
background value in pure sand (Nx), the denumerator Ns-
Nx approaches zero in Eq. 2 and normalization procedures
may lead to enhanced measurement uncertainties on the
normalized data. Within normal OSPAR assessments,
this issue is counteracted, as most data are obtained on
the <63 sediment fractions, which usually results into
high co-factor values, and measurement uncertainties
are included in the final model, leading to exclusion or
weight downsizing of data with larger uncertainties. This
approach applied to the 4DEMON data would especially
have excluded or downsized all data measured on the
<2,000 µm sediment fraction, meaning that mainly
the older historical data would have been excluded (as
less data were analyzed for the <63 µm fraction in the
seventies and eighties), while the project and this paper
specifically aim to include these historical data. Moreover,
the OSPAR assessment normally uses Al as co-factor,
but Al was rarely analyzed on the sediment samples
in the seventies.

To be able to include the older historical data and to
avoid the introduction of outliers, we developed a project-
specific normalization approach. This included: (1) the
selection of appropriate co-factors, (2) the determination of
good normalization constants, (3) the shaping of the final
normalization methods, and (4) the validation of the proposed
geochemical normalization methods.
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Co-factor Selection
As shown in Figure 3, a linear relationship should exist
between the contaminant concentration and the co-factor
concentration for equally polluted samples, i.e., samples that
have the same normalized contaminant concentration Css
(Smedes and Nummerdor, 2003). For PCBs only TOC was
tested as co-factor, while for metals three of the commonly
used co-factors (Al, Fe and TOC) were tested for their
goodness of fit. In addition, we also tested Ni as co-factor
for metals, although Ni is not inherently related to the clay
content. Linear regressions were deduced for each of the
contaminants against the 4 potential co-factors, based on equally
polluted samples, and corresponding correlation coefficients R2

were calculated.
Equally polluted samples were created by fractionation

of the sediment samples of DS3 (sampled in March 2015
at nine locations in the BPNS) into different grain size
fractions. All samples were sieved in subsamples, applying
an automatic sieving procedure in which seawater from the
sampling location is pumped over the sieves. The water
passing the sieves is led to a flow-through centrifuge that
retains the fine particles and the effluent is returned to the
sieves by a peristaltic pump (OSPAR, 2018). First, a 2,000
µm sieve was used to remove the larger sediment particles,
withholding the <2,000 µm fraction as fraction 1. Part of
fraction 1 was sieved over a 63 µm sieve and part of the
fraction <63 µm (fraction 2) was further sieved over a 20
µm sieve, leading to fractions 3 (0–20 µm) and 4 (20–
63 µm). The larger fraction >63 µm was ultrasonicated
for at least 3 h and further sieved on a sieving tower,
leading to five fractions: 500–2000 µm, 250–500 µm, 125–250
µm, 63–125 µm and <63 µm (fractions 5–9, respectively).
A schematic overview is provided as supplementary information
(Supplementary Figure 1).

The particle size distribution of the total sample was
measured using a Malvern Mastersizer 2000 laser diffractometer
with Hydro 2000G wet sampling system. Each individual
fraction was analyzed on metals, PCB and TOC content.
Analyses of metals and TOC were performed as described
by De Witte et al. (2016). Briefly, a wet extraction with
a mixture of HClO4, HNO3 and HF as digestion solvent
was applied for metal analysis followed by determination on
inductively coupled plasma-optical emission spectrometry (ICP-
OES) or inductively coupled plasma-mass spectrometry (ICP-
MS). Hg was determined after dry combustion followed by
Au-adsorption and atomic absorption spectrometry (AAS)-
quantitation using an advanced mercury analyzer (AMA). TOC
analysis was based on dichromate-sulphuric acid oxidation,
followed by back-titration with Mohr’s salt. For the PCB analysis,
7 congeners (IUPAC numbers CB28, CB52, CB101, CB118,
CB138, CB153, and CB180) were determined. Freeze dried
samples were analyzed by pressurized liquid extraction (PLE)
with hexane:acetone (3:1), with florisil added to the PLE-
cell for clean-up. The extract was desulfurized by activated
copper, followed by an additional clean-up on deactivated and
acidified silica. Samples were analyzed by gas chromatography
(GC)-ion trap mass spectrometry (MS) with separation of

PCBs on a TR-PCB 8MS column (Thermo, 50 m, 0.25 mm,
0.25 µ m).

Normalization Constant Selection
Regional specific values for the contaminant and co-factor
concentrations Cx and Nx were determined for pure sand
samples, gathered between 2008 and 2014 at 3 offshore locations
in the BPNS. Following the OSPAR protocol, background
concentrations for the northern part of the convention area
are currently expressed as values normalized to 2.5% TOC
(OSPAR, 2018). We used this reference value to deduce the
regional specific standard seafloor level Nss for the co-factors
Al, Fe and Ni. Linear regressions of Al, Fe and Ni were
built against TOC for the 9 equally polluted sieved fractions
for each of the nine locations sampled in March 2015. The
standard seafloor values are determined as the average of co-
factor concentrations deduced from each of the 9 regression sets
at TOC equal to 2.5%. The linear regressions for Ni are presented
in Figure 4.

The normalization constants Cx and Nx in Eq.2 are also
dependent on the analytical method. A total digestion method
leads to higher contaminant and normalizer concentrations
than a weak digestion method, resulting in larger Cx and Nx
values (OSPAR, 2018). Most metal data in sediments from
the BPNS have been obtained by total digestion methods. The
contaminant-co-factor regressions on equally polluted samples
were also determined using total digestion methods. The
datasets using weak digestion methods were not included in
the trend modeling.

Adapted and New Approaches for Metal
Normalization
High pivot point values (Cx/Nx) may lead to high analytical
errors and even unrealistic values for Eq. 2 when Cs<Cx or
Ns is close to Nx (see further). To overcome these limitations,
four different normalization approaches were evaluated and
selected for the final trend assessments. One metal normalization
procedure was based on granulometric normalization (<63
µm). To tackle the lack of measurement uncertainty data,
two normalization procedures relied on multi-parameter
normalization with Al and Fe as co-factors (hybrid 1 and hybrid
2). The use of Ni as normalizer within the fourth modeling
approach was a pragmatic choice, as in contrast to Al, Ni is not a
main constituent of clay.

Granulometric normalization
As normalization is obtained by sieving the sample prior to
analysis, contaminant concentrations can be presented, without
further recalculations. Only data for samples sieved at 63 µm
(<63 µm fraction) were selected and used for trend modeling.

Hybrid normalization 1
The hybrid normalization 1 is based on the general model
for geochemical normalization (Smedes et al., 1997) in which
two normalized contaminant concentrations are calculated
individually, each with a different co-factor, and the results
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FIGURE 4 | Regression lines of equally polluted samples for Ni vs. TOC to determine Nss (at TOC 2.5%).

are combined under a deviation range criterion. Relying on Al
and Fe as suitable co-factors for the BPNS regional domain,
we normalized metal values toward Al and Fe separately
(Eq. 2), after which averages of the two standardized metal
concentrations are calculated. To exclude potential outliers, the
standardized concentrations of Al or Fe not ranging within a
defined percentage around the average (arbitrary set at 50%) were
discarded from the normalized dataset for the trend modeling.
These out-of-range values may be due to analytical errors, to
samples that are extremely more or less polluted or derived from
areas with different geology, which induces normalizer deviation
from linearity regression to contaminants (Grant and Middleton,
1998). The Al-Fe normalization can thus be expressed as follows:

Normalization to Al:

Css.AL = (Cs − Cx)
NSS.AL − Nx.AL

Ns.AL − Nx.AL
+Cx (3)

Normalization to Fe:

Css.FE = (Cs − Cx)
NSS.FE − Nx.FE

Ns.FE − Nx.FE
+Cx (4)

Normalization to a combination of Al and Fe:

Css.AL−FE =
Css.AL+Css.FE

2
(5)

With a deviation range criterion given as:

0.5Css,Al−Fe < Css.AL, Css.FE < 1.5 Css,Al−Fe (6)

Hybrid normalization 2
Hybrid normalization 2 more or less follows the same approach
as hybrid 1 with a combination of Fe and Al, but selects
alternative individual or combined normalization models when
the hybrid normalized value falls outside the fixed deviation
range (similar criterion of 50% around the average). Either
CSS,AL (Eq. 2), CSS,FE (Eq. 3), or CSS,AL−FE (Eq. 4) will be
selected, dependent on cut off conditions set for the Al and

Fe terms (Ns-Nx)) in Eq. 1. An indirect cut off condition for
(CS-Cx) is included, since time trend modeling is performed
on log transformed normalized data, hence discarding negative
normalized values. The hybrid normalization 2 can be expressed
as follows:

Css =



∅, (Ns.FE − Nx.FE) ≤ 0 and (Ns.AL − Nx.AL) ≤ 0
Css.AL, (Ns.FE − Nx.FE) ≤ 0 and (Ns.AL − Nx.AL) > 0
Css.FE, (Ns.FE − Nx.FE) > 0 and (Ns.AL − Nx.AL) ≤ 0

Inf , Css.FE = Inf and Css.AL = Inf
Css.AL−FE, Css.FE < 3 Css.AL and Css.AL < 3Css.FE

Css.AL, Css.FE ≥ 3Css.AL or Css.AL ≥ 3Css.FE and
(Ns.AL − Nx.AL) > (Ns.FE − Nx.FE)}

Css.FE, Css.FE ≥ 3Css.AL or Css.AL ≥ 3Css.FE and
(Ns.AL − Nx.AL) < (Ns.FE − Nx.FE)

Ni normalization
Although Ni is not a main constituent of clay, the contaminant-
co-factor regressions on equally polluted samples of the BPNS
revealed good regressions between Ni and other metals,
suggesting its fit for use for normalization at the BPNS. Moreover,
Ni values in marine sediments of the BPNS are limitedly
impacted by anthropogenic sources. For example, at sampling
location ZEB (N 51.357, E 3.152) on the BPNS, annual variability
was very high for most metals, e.g., between 22 and 192
µg.kg−1 for Hg in the <63 µm fraction sampled in 2009–
2013. This variation is related to the influence of the tide on
the type of mud that is sampled (freshly deposited sediment
vs. Holocene consolidated mud; Fettweis et al., 2009), revealing
clear effects of industrial pollution. On the contrary, Ni was
one of the contaminants with little variation (21–26 mg.kg−1

in the <63 µm fraction), indicating the limited influence of
anthropogenic pollution. Due to the lack of other available
normalizers (such as TOC, Al and Li) in the 1970s, modeling with
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Ni as normalizer was included to enable the analysis of trends
starting from the early seventies. Normalization procedures
hybrid 1 and hybrid 2 could only be applied on timelines starting
in 1979.

Validating the Metal Geochemical Normalization
Methods
The variability between the three methods of metal geochemical
normalization was examined on the sample sets of the nine
equally polluted samples from the BPNS (period 2008–2014).
Ni normalization and hybrid normalization approaches 1 and
2 were also compared to the normalizations based on Al and
Fe alone. After normalization, fractionated subsamples (different
sediment size classes) from the same location should result in
comparable metal concentrations. As a consequence, a good
normalization method should result in low interquartile ranges
(IQR), low absolute differences between mean and median
(reduced skewness) and low number of outliers. A value is
considered to be an outlier if it is lower than the first quartile
minus 1.5x IQR or higher than the third quartile plus 1.5x IQR.
For the five geochemical normalization approaches and each of
the seven studied metals (As, Cd, Cr, Cu, Hg, Pb, and Zn), the
above mentioned variables were determined for each individual
sample and the average (IQR, mean-medium difference) or sum
(number of outliers) of all nine samples was calculated. Due
to the application of cut-off values when Ns-Nx <0, some
values were discarded.

Linear Mixed Effect Models for
Long-Term Trend Analyses
In order to assess spatial and temporal distribution of PCBs and
metal contaminants in marine sediments across the BPNS, we
opted for linear mixed effects models. Approaches relying on
linear mixed effects model are prescribed and widely used by
the OSPAR MIME (OSPAR, 2008) community for their quality
assessments. However, OSPAR MIME suggests the use of a
smooth model is function of time as fixed effect and three random
effect terms. In our case, we wanted to include as much historical
data as possible, which means data inhomogeneous in time,
location and analytical method. This unfortunately prevented the
suggested OSPAR model to be applied as such to our data.

Linear mixed effect models were applied, using a parametric
trend modeling procedure. This allowed us to address the
metadata diversity issues by including sampling location, season
and analytical method as descriptive parameters, in order to
discriminate the effect of variable changes from the real effective
modeled trends, i.e., the evolution in contaminant concentrations
in time and space. This is particularly the case for analytical
method switches in the laboratory, which may be reflected in
shifts in the observed contaminant concentrations over time.
The fact that different laboratory methods seldom overlap in
time makes it difficult to evaluate whether differences are due to
laboratory effects or to real changes. In general, concentrations
have been measured using the same analytical method for more
than 5 years. For each analytical method (period), we observed
that the related time trends for most of the contaminants

(especially normalized concentrations) followed similar slopes
when changing from one method to another. We thus assume
that a laboratory effect only implies a level shift (changes in
the intercept) but no real trend changes (changes in slope
over time). Therefore, the analytical method was included as
explanatory variable without adding an interaction term between
time and analytical method, thus limiting the complexity of the
models. The full optimal mixed-effects models we applied can be
described as follows:

Y = α+ β1t + β2t2
+ β3CLUSTi+β4SEASON j

+β5AMDk + s(l) + ε (7)

where

- Y : the natural log transformed normalized contaminant
concentration in sediment sampled at ith cluster zone
CLUST during jth season SEASON, measured with the kth

analytical method AMD at lth station s at time t in years.
- α: the mean concentration level at the start of the

monitoring period
- β1: the mean slope for the linear time trend
- β2: the mean slope for the quadratic time trend
- β3: the mean slope for CLUST at ith cluster zone
- β4: the mean slope for SEASON at jth quadrimester
- β5: the mean slope for AMD at kth analytical method
- s(l): the random effect associated with the lth sampling

station
- ε : The error term associated with the above described

contaminant concentration

We assumed that s(l) and ε are independent and that their
distributions follow normal distributions of mean 0 and standard
deviation σs and σε. Log transformation of the contaminant
concentrations is needed, so the model residuals follow a normal
distribution and to comply with normality conditions necessary
to make the fitted model valid. Stations (locations) are included
as random effect to capture the spatial correlations between
contaminant levels in sediments sampled at same location. Given
that sediment contaminant concentrations at one location over
several years are expected to be more similar compared to
concentrations in the sediment at other locations, each location
is assigned a different random intercept value that is estimated
by the mixed-effects models. We introduced sampling season,
spatial zone and analytical method as fixed effect terms in
the full optimal mixed effect model, to evaluate how pollution
concentrations are evolving over time. Seasons are defined as
quadrimesters. An interaction term between time and zones is
added to allow different trends/slopes per cluster zones.

Mixed-effect models were fitted on the natural log-
transformed concentrations of each PCB congener with
granulometric normalization (i.e., solely sediment fraction 0–63
µm). For the 7 selected metals, mixed-effect models were fitted to
log-transformed data, based on the four normalized procedures,
i.e., granulometric normalization (0–63 µm granular fraction),
normalization methods Hybrid 1 and 2 and Ni normalization.
Prior to model fitting, we eliminated influential outliers based on
Cook’s distance, which calculates the impact of each data point
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on the regression analysis. We arbitrary use a cut-off value of
0.2 to discard outliers from the modeled datasets, based on data
interpretation with a subset of data.

Model fitting was deduced from restricted maximum
likelihood (REML) estimations using R function nmle:lme
(Pinheiro et al., 2018). Starting from the full optimal mixed effect
models (Eq. 7), fixed variables were selected by means of the
maximum likelihood estimation (ML) via the R lme4:drop1()
function (Bates et al., 2015), which allows for single term
deletions for nested models and likelihood ratio tests (LRT)
based on a χ2 statistic. All remaining terms were significantly
different from 0 at the 5% level. The total reduction (or increase)
percentages were deduced for each of the contaminants and
normalization methods.

Model validation as described by Zuur et al. (2009) was
performed on normalized residuals to verify homogeneity of
variance and independence. In some cases, homogeneity and
independence could be improved. To reduce the inhomogeneity
on residuals spread across analytical methods, which was
sometimes observed, we tried to add a fixed variance structure
nmle:varIdent() to the model (Pinheiro et al., 2018) to produce
different standard deviations per method. However, this did not
change the fitted trend conclusions. Therefore, this fixed variance
structure was not included in the final models.

Independency against time was tested by adding a temporal
correlation structure AR-1 auto-correlation (1st order auto-
regressive error structure), to model the residual at time s
as a function of the residual of time s−1. The addition of
a temporal correlation increases the model complexity and
drastically enlarges the calculation time. We tested this addition
for the four types of normalized concentrations and different
contaminant time series, but the standard error of the estimates
was similar for almost all contaminants and normalization types,
while only little improvement in the assumptions respect was
reached. Therefore, we did not further exploit the results of
those complex models.

RESULTS AND DISCUSSION

Spatial Delineation of Cluster Zones in
the BPNS
Based on Ward hierarchical clustering, five cluster groups could
be defined. Table 1 reflects the median contamination level
per contaminant in each cluster group (A-E) compared to the
median concentrations for the whole BPNS. Cluster group C
contains samples with low concentrations of PCBs and metals,
while the opposite is true for cluster groups B and D. Cluster
groups A and E contain samples with low PCB concentrations
but high concentrations for some or most metals (As, Cr, Ni,
Cu, Pb, Zn). Remarkably, Cd and Hg concentrations are low
when PCB concentrations are low. A similar association pattern is
reflected along the first axis of the PCA (Figure 5). Moreover, all
PCB congeners are plotted well together in the PCA, indicating
major similarities in distribution patterns between individual
PCBs, which is also reflected in the cluster analysis. Hg and
Cd are not present or only at very low concentrations in a

coarse mineral matrix (OSPAR, 2018). They also tend to bind
more to organic material (Loring, 1991). The organic material
content distribution (high in the nearshore area of the BPNS)
may explain the higher near-shore concentrations (and low
off-shore concentrations) of Hg and Cd, similar to PCBs, but
clearly distinct from other metals. In the PCA plot, Zn is
positioned away from the other metals as well as from the
PCBs. This is more or less consistent with the cluster group
concentration levels where Zn is found at very high levels
for group D (and E) and at low levels for group A (and
C) (Table 1).

The hierarchical clustering primarily aimed to divide the
BPNS into clear spatial zones with specific patterns in
contaminant concentrations. As can be seen in Figure 6, the
offshore area of the BPNS is dominated by cluster group E (low
concentrations in PCBs, Hg, and Cd, and high concentrations

TABLE 1 | Cluster groups (A-E, based on Ward hierarchical clustering) and cluster
zone association (zone 1–5, based on cluster groups, PCA and sedimentology
characteristics).

Contaminant A B C D E

As + + − + ++

Cr ++ + − + ++

Ni ++ + − + ++

Cu + + − − 0 ++

Pb − + − − ++

Zn − + − ++ ++

Cd − − + 0 − − −

Hg − − ++ − − − −

CB28 − − + − + − −

CB52 − + 0 ++ − −

CB101 − + − ++ − −

CB118 − − + − ++ − −

CB138 − − + − ++ −

CB180 − − + − ++ − −

Contaminant Zone 1 Zone 2 Zone 3 Zone 4 Zone 5

As ++ 0 + − −

Cr ++ 0 0 ++ −

Ni ++ + + 0 −

Cu ++ + 0 0 −

Pb ++ + − ++ 0

Zn + + + − −

Cd − − 0 0 − − +

Hg − − 0 − 0 +

CB28 − − + 0 − 0

CB52 − − ++ 0 − − 0

CB101 − − + 0 − 0

CB118 − − + 0 0 −

CB138 − + 0 − −

CB180 − − + 0 − − 0

The cluster group and cluster zone medians are compared to the median for the
whole BPNS per contaminant:− − very low level (below quantile 0.25),− low level
(between quantiles 0.25 and 0.45), 0 normal level (between quantiles 0.45 and
0.55), + high level (between quantiles 0.55 and 0.75), ++ very high level (above
quantile 0.75).
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FIGURE 5 | PCA on the subset used for clustering (2007–2011), based on center scaled PCB and metal concentrations (granulometric normalization on the 0–63
µm sediment fraction).

FIGURE 6 | Spatial zonation of the BPNS into five cluster zones, based on Ward hierarchical clustering (cluster groups), the PCA association patterns, and
sedimentological characteristics. Numbers in the pie diagrams represent the number of samples/locations found in each cluster group per cluster zone.

of other metals). Therefore we grouped all locations in cluster
group E in a more or less clearly distinct offshore Cluster
zone 1. This zone is dominated by medium and coarse sands
(Hademenos et al., 2018). In the near shore area the cluster
groups occurred more mixed, which complicated the division
in clear spatial zones. Therefore, a further division in spatial
cluster zones is partly arbitrarily and mainly based on the ratio
of locations belonging to cluster group A and B, in combination

with our knowledge on the hydrodynamic environment and
sedimentological characteristics of the BPNS as described by
Hademenos et al. (2018). Cluster zone 2 showed a clear
dominance of cluster groups B and C and a lack of cluster
groups A and E. The area is characterized by fine to medium
sands and high concentrations in PCBs and metals (Table 1).
Differences between cluster zones 3, 4 (and 5) are rather limited.
A mixture of the remaining cluster groups (A, B, C) and to a lesser
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FIGURE 7 | Contaminant—co-factor linear relationships for (A) Hg-Fe and (B) CB153-TOC based on 9 sediment samples collected in March 2015 across the BPNS
and fractionated in equally polluted subsamples (9 sediment particle size classes).

TABLE 2 | Median R2 values for the linear regressions between contaminant concentrations (8 metals) and 4 co-factors, based on nine sampling locations
(period 2008–2014).

As Cd Cr Cu Ni Pb Zn Hg

Al 0.40 0.71 0.80 0.77 0.85 0.86 0.84 0.78

Fe 0.53 0.82 0.98 0.82 0.90 0.88 0.94 0.85

TOC 0.68 0.93 0.80 0.94 0.93 0.85 0.95 0.92

Ni 0.68 0.92 0.85 0.97 0.91 0.96 0.91

Highest values are presented in bold.

extent group D (mainly in cluster zone 3) is found. As cluster
zone 5 has clearly distinct sedimentology dominated by silt and
clay, it was decided to group these locations as a distinct zone.
Consequently, cluster zones 3 and 4, which are dominated by fine
sand (Hademenos et al., 2018), were automatically delineated, as
they are spatially separated in relation to cluster zones 2 and 5.
Cluster zones 3, 4 and 5 are characterized by very low to medium
PCB concentrations, with low to medium metal concentrations
except for Cd and Hg in zone 5, As, Ni and Zn in zone 3 and very
clearly for Cr and Pb concentrations in cluster zone 4 (Table 1).

Evaluation and Validation of the
Normalization Procedures
Co-factor Selection
The best co-factor or normalizer is presented by the highest
R2 value in the contaminant-co-factor linear relationship. Two
examples for Hg vs. Fe and CB153 vs. TOC are given in Figure 7.

Median determination coefficients (median R2 values) for
the linear regressions between the eight studied metals and
the four co-factors (Al, Fe, Ni, and TOC) varied from 0.71
to 0.98, except for As where R2 varied from 0.40 and 0.68

TABLE 3 | Pivot values (Nx/Cx) and standard seafloor concentrations (Nss) with
respective standard deviations, and compared to values presented in Smedes
et al. (1997) and OSPAR (2008).

Element Nx/Cx value Pure
sand

Nx/Cx value
Smedes

Nx/Cx value
OSPAR

Nss value

Cd (mg.kg−1) 0.02 ± 0.01* 0.03 ± 0.06 0.03 ± 0.06

Pb (mg.kg−1) 5.5 ± 1.0 2.0 ± 2.2 9 ± 3

As (mg.kg−1) 4.8 ± 2.1 3.0 ± 1.5 5 ± 3

Cr (mg.kg−1) 5.0 ± 2.2 13.0 ± 6.0 13 ± 6

Cu (mg.kg−1) 1.1 ± 0.4 1.0 ± 1.0 3 ± 1

Zn (mg.kg−1) 5.5 ± 1.5 8.0 ± 9.0 13 ± 5

Hg (µg.kg−1) 1.7 ± 0.5 0.00 ± 0.04 0.00 ± 0.04

Al (%) 1.0 ± 0.2 1.4 ± 6 4.2 ± 1.0

Fe (mg.kg−1) 0.3 ± 0.1 2.7 ± 0.6

Ni (mg.kg−1) 2.4 ± 0.6 4 ± 2 26.0 ± 3.2

∗For Cd, values in pure sand were below the limit of detection, and Cx was derived
from the regression of Cd vs. TOC on equally polluted samples.

(Table 2). Highest R2-values for As, Cd, Ni and Hg were obtained
for co-factor TOC. However, the historic datasets collected
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TABLE 4 | Variability performance of the five normalization methods.

Factor Normalization method As Cd Cr Cu Hg Pb Zn Sum

IQR score (%) Al 112 154 193 100 120 194 108 982

Fe 134 100 138 121 129 198 124 945

Hybrid 1 100 133 131 109 120 215 105 913

Hybrid 2 132 133 100 104 122 205 100 895

Ni 197 214 395 107 100 100 135 1,248

Diff. mean-median (%) Al 133 126 174 257 100 100 143 1,033

Fe 1,558 456 100 394 322 1,355 178 4,363

Hybrid 1 100 100 105 227 116 128 100 876

Hybrid 2 1,606 462 110 441 307 1,363 215 4,505

Ni 582 366 383 100 294 700 338 2,764

Outlier score Al 16 14 20 14 14 14 19 111

Fe 28 26 24 23 15 16 15 147

Hybrid 1 20 16 19 15 14 11 13 108

Hybrid 2 28 21 26 22 14 15 21 147

Ni 18 21 26 21 21 26 25 158

Discarded values Al 17 13 12 13 12 12 11 90

Fe 6 5 6 7 5 8 4 41

Hybrid 1 18 13 13 14 14 13 14 99

Hybrid 2 5 5 5 6 4 7 2 34

Ni 14 9 8 9 9 11 8 68

The interquartile range (IQR) and difference mean-median are presented as %, relative to the lowest value of IQR or mean-median difference for each metal. Number of
discarded values and number of outliers are presented as absolute values. Best value for each factor and metal is given in bold.

within the 4DEMON project (period 1971–2015) showed that
TOC data are frequently missing. In addition, switches in
analytical method over time occurred more often for TOC
than for metals. For modeling time trends based on long-
term data series such as the 4DEMON dataset, this would
increase the number of changes in analytical methods within
the normalized dataset, resulting in more complex models.
TOC was therefore not withheld for metal normalization in the
final modeling approach. On the contrary, metal normalizers
are mostly determined by the same analytical method as the
contaminant itself, supporting the use of the metal normalization
procedures. When comparing the performance of Al with Fe for
metal normalization at the BPNS, Fe was found to be a better
co-factor than Al for all analyzed contaminants. Interestingly,
for all metals except for Cr, linear regressions to Ni revealed
higher R2 values compared to regressions to Al and Fe as co-
factor (Table 2).

Whereas appropriate co-factors could be found for metals in
sediment, surprisingly, the analysis of equally polluted samples
resulted in poor results for PCBs against the potential co-factor
TOC, with median R2 values varying between 0.05 for CB28 and
0.56 for CB101. This is shown in Figure 7B for CB153, where
linearity is poor and no clear intercept could be derived from
the different regression lines. Since organic contaminants have
a strong affinity with organic matter (OSPAR, 2018), a linear
relationship was expected. The lack of a linear relationship might
be related to low PCB concentrations in the medium and coarse
sediment fractions at low TOC values, increasing variability. For
trend analysis, it was decided to only consider a granulometric
normalization, and limit the PCB time trend modeling to the <63
µm sediment fraction.

Normalization Constants
In addition to the normalizer, also the pivot values Nx, Cx for
all metals and the standard seafloor values Nss (for the co-factors
corresponding to 2.5% TOC) have to be determined. The values
Nx and Cx, derived from pure sand samples (taken offshore
BPNS, DS4) are compared with pivot values derived by Smedes
et al. (1997) for the neighboring Dutch part of the North Sea,
and with the OSPAR values used for metal determination through
total digestion methods (OSPAR, 2008; Table 3).

The pivot values may have a large impact on the normalization
result. Within Eq.2, the denumerator is defined as Ns – Nx.
When Ns approaches Nx, large errors can be created due to
analytical variations, and when Ns – Nx is <0, normalization
is even impossible (OSPAR, 2015). Pivot values are regionally
dependent. For example, in the Venice lagoon in northern Italy,
Al revealed similar concentrations in coarse and fine fractions
due to the presence of feldspars in the coarse fraction (Miserocchi
et al., 2000). Al values in sediments from Canadian waters are
much higher than in sediments of Dutch marine waters (Smedes
et al., 1997). Furthermore, pivot values are dependent on the
extraction method. A total digestion method for metal extraction
usually results in larger values for Cx and Nx than weak digestion
methods (OSPAR, 2015).

Within the 4DEMON project, more than 14,000 metal
contaminant values were collected from the main dataset based
on four decades of marine monitoring in the BPNS (1971–
2015). To minimize normalization errors, we tested the variability
between different methods of metal normalization, by calculating
the amount of samples with a low denumerator in the main
dataset. Normalization to Al with the selected pure sand pivot
values resulted in 8.2% of all contaminant values with Ns-Nx <0
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and 9.3% with Ns-Nx <1. With Fe normalization, the amount
of contaminant values with Ns-Nx <0 and <1 was 3.3 and
13.5%, respectively.

Validation of the Geochemical Normalization
Procedures
For metals, the geochemical normalization methods hybrid 1,
hybrid 2, and Ni were compared to the normalization procedure
to Al and to Fe independently, using the equally polluted sample
set (sampled at nine locations across the BPNS in March 2015).
Results are presented in Table 4 as relative values (%) compared
to the lowest (best) values for a given metal for the interquartile
range (IQR) score and the difference between mean and median,
respectively. Also, absolute values for outlier score and number
of discarded values have been calculated.

The choice for the best normalizer is a weighing between
different factors. Reduced variability, expressed by a low IQR
score and a small difference between mean and median, can
be expected to be linked to a higher number of discarded
values. Normalization method hybrid 1, closely followed by
normalization to Al, resulted in low differences between mean
and median and low interquartile ranges (IQR) (Table 4). Hybrid

TABLE 5 | Overall trend (% increase or decrease) in metal concentrations over the
total time series and over the last 5 years of the modeled time period (2011–2015)
for each normalization method.

Normalization
method

Time span Overall
change (%)

Last 5 year
change (%)

As Granulometric 1997–2015 −77 +19

Hybrid 1 −87 +25

Hybrid 2 −88 +33

Ni −81 +41

Cd Granulometric 1990–2015 −79 +4

Hybrid 1 1990–2015 −75 −24

Hybrid 2 1987–2015 −72 −20

Ni 1978–2015 −100 −1

Cr Granulometric 1987–2015 −52 −13

Hybrid 1 1979–2015 −77 −20

Hybrid 2 1979–2015 0 −24

Ni 1971–2015 +32 −14

Cu Granulometric 1987–2015 −90 +27

Hybrid 1 1979–2015 −46 −9

Hybrid 2 1979–2015 −66 −3

Ni 1971–2015 −75 −2

Hg Granulometric 1990–2015 −54 +13

Hybrid 1 1979–2015 −67 −15

Hybrid 2 1979–2015 −44 −8

Ni 1971–2015 −39 −7

Pb Granulometric 1987–2015 −86 +15

Hybrid 1 1979–2015 −71 −16

Hybrid 2 1979–2015 −66 −14

Ni 1971–2015 −57 −9

Zn Granulometric 1987–2015 −25 +8

Hybrid 1 1979–2015 +180 −15

Hybrid 2 1979–2015 +126 −10

Ni 1971–2015 +468 −3

1 provided best reliable normalized values, however, the resulting
final dataset size was largely reduced due to the deviation range
condition, leading to the highest number of discarded values.
By applying hybrid method 1, 13–18 values (on a total of 82
for each metal) from the equally polluted samples dataset were
discarded (comparable to the number discarded when using the
Al normalization procedure). Discarding these values also led
to a relatively low number of remaining outliers for all metals,
varying from 11 to 20, which will reduce data variation when this
normalization method is applied within time series analysis.

On the other hand, hybrid 2 and Fe normalization
equally resulted in low IQR scores, but showed higher
numbers of outliers and larger differences between mean and
medium (Table 4). This is especially true for As and Pb.
In contrast, the number of discarded values (2–7) was much
lower for the individual metals in both hybrid 2 and Fe
normalization procedures. Within the 4Demon dataset, the
measured contaminant concentration normalized to Al (NS,AL)
was lower than the contaminant pivot value normalized to Al
(NX,AL) for 8.2% of the metal values. Within normalization
method hybrid 2, most of these values are not discarded as the
hybrid 2 procedure then returns a value normalized to Fe. This
leads to a higher amount of low concentration values within
hybrid 2 compared to hybrid 1. This enlarged the variability of the
normalized values distribution, which is in particular apparent by
the introduction of a higher amount of outliers, but did not affect
the interquartile range.

Ni proved to be the best co-factor for BPNS sediment
contaminant normalization based on the contaminant-cofactor
linear regressions (Table 2). However, Ni normalization resulted
in relatively higher interquartile ranges and the highest
number of outliers compared to the other normalization
approaches (Table 4).

With the objective of limiting the exclusion or downsizing
older data, which is often the case when using data based on
total sediment analyses with unknown measurement uncertainty,
the proposed normalization procedures are believed to have a
substantial added value compared to for example the OSPAR
protocol (OSPAR, 2018). The methods counter the risk of
errors created by normalizer values close to Nx. Moreover, the
selected normalizers have been routinely analyzed within marine
monitoring and research programs in the BPNS over the past
decades, with Ni values available since 1971 and Fe and Al values
available since 1979. This makes them perfectly suitable to be
applied on long-term datasets. The ultimate choice depends on
the project goals and the metadata availability.

Long-Term Trend Analyses on the BPNS
Based on Linear Mixed Effect Modeling
Trends and spatial differences in PCBs and metal contamination
in the BPNS have been deduced from linear mixed-effects
models, built on four decades of PCB concentrations (<63 µm
sediment fraction) and eight metal concentrations normalized
with four normalization procedures, granulometric (<63 µm
fraction), Hybrid 1 and 2 (as combinations of Al and Fe), and Ni
normalization. Detailed results of all models, with data counts,
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removed outliers, information on each model parameter, and
trend graphs are provided as Supplementary Figures 2–9 and
Supplementary Table 2). A selection of trend graphs is presented
in Figures 8–10.

Modeling of Metal Data
The change in log transformed metal concentrations is presented
in Table 5 for the entire modeled period as well as for the
last 5 years of the model. Time trends for Pb for the different
normalization methods are presented in Figure 8. Modeling
start date depends on the selected normalization method, with
longest time trends starting in 1971 for Ni normalization. As
analytical method is a model parameter, data point shifts can
be observed. As such, an optical misleading effect may appear
that trend lines do not seem to fit all data points. E.g., a
constant decrease in Pb concentrations can be seen in the data
of the eighties and first half of the nineties in Figure 8C,
followed by a steep increase in concentrations in 1996–1997,
again followed by a constant decrease. The instant increase in

1996–1997 is due to a change in instrumentation, as metal
detection by graphite furnace atomic absorption spectroscopy
was changed to inductively coupled plasma-optical emission
spectrometry in that period, and significantly increased the
recorded Pb values.

Although hybrid 1 normalization showed a reduced variability
by discarding a higher amount of values (10.6% on a time series
of 1,373 data points) compared to hybrid 2 and Ni normalization,
this did not affect the overall Pb time trend, with a total overall
reduction of 71% compared to 66 and 57%, respectively (Table 5
and Figure 8). Results of the granulometric normalization
showed the same trend, be it on a shorter time scale (86% overall
reduction). For As, Cu, Cd, and Hg, the differences between
normalization methods were limited, with metal reductions over
the total time span (1971–2015) varying from 39% (Hg, Ni
normalization) to 100% (Cd, Ni normalization) (Table 5). As
can be seen for Pb (Figure 8) or for other metals (Figure 9;
Supplementary Figures 2–8), the strong metal reduction in all
zones of the BPNS can be seen as a result of a linear decrease or

FIGURE 8 | Trends in log Pb in sediments of the BPNS, applying (A) granulometric normalization (<63 µm, 1987–2015), (B) Ni normalization (1971–2015),
(C) Hybrid method 1 (1979–2015) and (D) Hybrid method 2 (1979–2015). Data points represent the derived concentrations, after normalization. Colored regression
lines represent the fitted time trends within each spatial cluster zone, scaled to the first quadrimester and to the most recent analytical method.
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a strong decrease over the first decades followed by a steady state
or slight increase since 2010–2011 (Table 5). Only for Cr (and
Zn, see further), the outcomes of the normalization procedures
differed: granulometric normalization and hybrid 1 revealed a
decrease, while hybrid 2 and Ni normalization showed a steady
state or even a small increase (Table 5 and Supplementary
Figure 3). The models for Cr differed especially in the first

decades of the considered time frame, while all models showed
a decrease since 2000.

When differences in cluster zones are studied in more detail,
it can be seen that the more offshore cluster zone 1, had higher
normalized As concentrations. Also, consistent with the cluster
analyses based on the 5 years’ subset, Hg and Cd presented
lower concentrations at spatial cluster zone 1. The observed

FIGURE 9 | Trends in metals in the BPNS based on Hybrid normalization method 1. Data points represent the derived concentrations after normalization. Colored
regression lines represent the fitted time trends within each spatial cluster zone, scaled to the first quadrimester and to the most recent analytical method.
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decrease for Pb and most other metals were as expected, related
to pollution control measures at industrial combustion processes
and metal production, transport and waste streams (OSPAR,
2010). Moreover, the observed time trends are in line with other
published time trends on metals in the BPNS or the North
Sea. Guns et al. (1995) evaluated the period 1979–1995, Gao
et al. (2013) looked at 1978–1998, and De Witte et al. (2016)
covered the period 2005–2014. Also, decreasing metal time trends
were noted in the OSPAR assessment for 1998–2007 in the
North-East Atlantic, which includes the North Sea (OSPAR,
2010). In the OSPAR intermediate assessment covering period
2005–2015 (OSPAR, 2017), a decrease in Hg concentrations
was noted but no statistical changes occurred for Cd and Pb
during that period in the southern part of the North Sea. These
results proof that the applied trend models for Pb are robust
for the normalization selection and in line with international
assessments within the same region. The inclusion of historical
data from the nineteen seventies and eighties hampered the use
of highly qualitative and standardized OSPAR procedures for
data assessment on the entire 4Demon data set. The integration
of various analytical methods from different data owners as
well as the spatial clustering of locations induces variability. In
contrast to the OSPAR procedure, data with larger measurement
uncertainty was not excluded or downsized, since this would
have eliminated especially the oldest data, often measured on
the whole sediment fraction. To ensure a qualitative assessment,
alternative quality checks were introduced at the stage of the
normalization and by applying an outlier test. The similarity of
trends compared to international standardized procedures shows
the robustness of the applied methodology.

In contrast to the other metals, Zn models with the three
geochemical normalization procedures (period 1971 or 1979–
2015) showed a general increase between 126% (hybrid 2) and
468% (Ni normalization). Only granulometric normalization

showed a limited decrease (−25%) on a shorter timeframe
(1987–2015). At specific locations in the BPNS and on a
limited timeframe (2005–2014), a Zn increase was already
noted by De Witte et al. (2016) in cluster zone 2 (sludge
disposal site Nieuwpoort) and at the west side of cluster zone
5 (nearby sludge disposal site Oostende). The present study
confirms that also on a larger time frame and within the
different cluster zones of the BPNS, trends in Zn concentrations
are increasing. Zn is a metal with multiple sources in the
marine environment. Between 1961 and 1985, huge amounts
of Zn were dumped at the BPNS originating from titanium
dioxide industrial waste. On average 600,000 tons of waste
was discharged yearly within this period, containing 120,000
tons of sulphuric acid but also 3 tons of Zn (Baeteman et al.,
1987). Next to Cu, Zn is also used in marine antifouling
products, especially since the ban on TBT in antifouling
paints (Turner, 2010), and as anode on ships and marine
constructions, like windmill parks (Kirchgeorg et al., 2018).
Moreover, Zn is identified as an important contaminant
within the adjacent river Scheldt, which connects the port
of Antwerp with the BPNS, and is therefore put forward
as a pollutant to be monitored in the coastal zone of the
BPNS within the Water Framework Directive (Belgische Staat,
2016). Considering the expansion of windmill parks at the
BPNS, combined with increasing trends in shipping traffic, it
will be of special interest to follow up Zn concentrations in
the upcoming years.

Modeling of PCB Data
PCBs revealed a decreasing trend from 1991 to 2015 in marine
sediments of the BPNS (Figure 10), with a total change, averaged
over the five spatial cluster zones, varying from −36% for
CB118 to −60% for CB180 (see Supplementary Figure 9). The
overall decrease for most PCBs resulted from a strong decrease

FIGURE 10 | Trends in PCBs in sediments of the BPNS based on granulometric normalization (<63 µm sediment fraction). (A) CB101, (B) CB180. Colored
regression lines represent the fitted time trends within each cluster zone, scaled to the first quadrimester and to the most recent analytical method.
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in the nineties, followed by a leveling off or even an increase
over the last 10–15 years. The offshore spatial cluster zone
1 showed the most intense decrease for all PCB congeners,
from −18% overall reduction for CB52 to −89% for CB101,
leading to the lowest contamination levels in spatial cluster
zone 1 in the most recent years (2010–2015) compared to
the other cluster zones. This is consistent with the low levels
which were already seen in the cluster analyses (period 2008–
2014). Spatial cluster zones 3 and 5 showed the lowest decrease,
with even an overall increase for CB28, CB52 and CB118
at cluster zone 5.

For PCB trends in sediment of the BPNS and the southern
part of the North Sea, contradictory information is found in
literature. Roose et al. (2005) did not find a significant decrease
from 1991 to 2001 for CB153 in sediments. The OSPAR quality
status report (OSPAR, 2010) indicated no significant decrease
for more than 80% of the PCB time series (1998–2010) in
the North Sea whereas a downward trend was modeled for
the Southern North Sea between 1995 and 2015 (OSPAR,
2017). De Witte et al. (2016) recorded a steady state or even
an increase in PCB concentrations from 2005 to 2014. In
contrast, Everaert et al. (2014) found a 50–66% decrease from
1991 to 2010. With the advantage of considering a larger
timeframe and taking into account method switches within
the 4DEMON dataset, our results proved to be consistent
with all mentioned publications, as the modeled trend analyses
showed a strong decrease in PCB concentrations in the BPNS,
followed by a steady state or increase. The lower reductions
and higher levels in PCB concentrations in cluster zones
3 and 5 compared to the offshore cluster zone 1, can be
related to inputs from the nearby port of Zeebrugge and the
Scheldt estuary. Everaert et al. (2014) found no PCB decrease
between 1991 and 2010 in the Scheldt sediments. Continuous
inputs of suspended solids from the Scheldt estuary into
BPNS cluster zones 3 and 5 might affect PCB trends in these
nearshore areas.

CONCLUSION

The aim of this study was to develop extended, multi-decade
trends on metals and PCBs in the marine environment, based
on different monitoring and research studies in the BPNS.
Multi-decade trend analysis might provide valuable information
within a broad perspective for scientists and policymakers on
anthropogenic impacts on the marine environment. However,
the integration of historical data from the nineteen seventies and
eighties into long-term time trends implied some major issues
to be solved: sampling locations changed over time, different
analytical methods were applied, analyses were performed
on different grain size fractions and not all appropriate
normalizers were analyzed for all samples. These limitations
hampered the use of the highly qualitative and standardized
OSPAR protocols. Alternative approaches were developed and
applied, so that the oldest historical samples, which are
often measured on the whole sediment fraction and contain
less metadata amongst which information on measurement

uncertainty, can be retained for the modeling approach. This
works presents a novel approach, where spatial clustering is
combined with different adapted normalization methods and
integrated in long-term trend parametric linear mixed effect
models. This novel approach was used to integrate different
valuable PCB and metal datasets gathered between 1971 and
2015 in the BPNS.

Project results revealed major differences in metal
distribution, with relatively high Cd and Hg concentrations
at the coastal zone where the sediment clay fraction is high.
Model results also revealed increasing Zn concentrations for
3 out of 4 normalized models, while PCB concentrations are
slightly increasing in the BPNS over the last decade (2005–
2015). Local increases of Zn and PCB stress the importance
of continuous monitoring, even of banned substances. This
study also showed the importance of compiling real long-term
trends: different publications on PCBs in sediments of the BPNS
came to different trend conclusions depending on the time
period studied; our overarching assessment provides a broader
perspective, complementing and completing the results of the
shorter time trend studies.

The applied clustering, normalization and modeling
approaches may be of high value for multi-decade contaminant
time trend analyses in other geographical regions. Of course,
case dependent differences will remain; if datasets are too
fragmented, with many data originators and multiple method
changes, trend modeling might be hampered. Moreover, the
selection of appropriate co-factors is dependent on the available
metadata within each dataset and the normalization constants
are dependent on region and analytical method. Still, we believe
we proved the added value of this combined approach to
analyze long term trends in four decades of metal and PCB
contamination data.
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