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Abstract: Karstic landscapes are immense reservoirs of biodiversity and range-restricted endemism.
Nowhere is this more evident than in the world’s third-largest vertebrate genus Cyrtodactylus
(Gekkonidae) which contains well over 300 species. A stochastic character mapping analysis of
10 different habitat preferences across a phylogeny containing 344 described and undescribed species
recovered a karst habitat preference occurring in 25.0% of the species, whereas that of the other eight
specific habitat preferences occurred in only 0.2–11.0% of the species. The tenth category—general
habitat preference—occurred in 38.7% of the species and was the ancestral habitat preference for
Cyrtodactylus and the ultimate origin of all other habitat preferences. This study echoes the results
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of a previous study illustrating that karstic landscapes are generators of species diversity within
Cyrtodactylus and not simply “imperiled arks of biodiversity” serving as refugia for relics. Unfortu-
nately, the immense financial returns of mineral extraction to developing nations largely outweighs
concerns for biodiversity conservation, leaving approximately 99% of karstic landscapes with no legal
protection. This study continues to underscore the urgent need for their appropriate management
and conservation. Additionally, this analysis supports the monophyly of the recently proposed
31 species groups and adds one additional species group.

Keywords: Indochina; Southeast Asia; phylogeny; Indo-Australian Archipelago; Bent-toed geckos;
karst; conservation

1. Introduction

The dramatic topography of karstic landscapes composes some of the most surreal
images of our world and has stirred the emotions of ancient artisans and natural historians
for time on end. But not only are these crenulated, repeating layers of rugged terrain
steeped in natural beauty (Figure 1), they are the only refuge for some of the most seriously
endangered species on the planet [1]. Asia contains 8.35 million km2 of karstic habitat
with some of the most extensive concentrations ranging from China to western Melanesia
(Figure 2). These formations are notable for their fragmented, island-like nature, with
hills, caves, and towers forming archipelagos of habitat-islands stretching across broad
geographic areas. This, and their fractured and eroded surfaces—which provide a myriad of
microhabitats in which many taxonomic groups have specialized—have contributed to their
extraordinarily high degrees of range-restricted endemism [2–5]. Karst formations are often
referred to as “imperiled arks of biodiversity” [5]. However, a stochastic character mapping
analysis of habitat preference using 243 species of the gekkonid genus Cyrtodactylus—
the third most speciose vertebrate genus on the planet—indicated just the opposite [6].
Grismer et al. [6] demonstrated that karstic landscapes not only harbor range-restricted
endemics, but have been the foci of speciation for the largest independent gekkonid
radiations across all of Indochina and Southeast Asia. They went on to show that even in
this ecologically labile genus, karst-associated species outnumbered by threefold all other
species bearing other specific habitat associations. As such, this has transformed our view
of karstic landscapes from that of “limestone museums” harboring relictual endemics, to
platforms of speciation and generators of biodiversity across a broad taxonomic landscape
(e.g., [7–10]).
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Figure 2. The distribution of karstic landscapes throughout Indochina and the Indo-
Australian Archipelago.

Cyrtodactylus is by far the most speciose and ecologically diverse gekkotan genus [6,11].
It currently contains 306 nominal species (as of 14 February 2021; [12]) ranging from South
Asia to Melanesia (Figure 3) where they occupy a vast diversity of habitats. As would
be expected from a group this large and widely distributed, it bears a broad variety
of ecotypes ranging from short robust terrestrial species to cryptically colored arboreal
species to gracile cave-dwelling and karst-adapted specialists (e.g., [13–21]; Figure 4). The
annual rate at which new species are being described is unprecedented and shows no
signs of leveling off (Figure 5) and the majority of the most recently described species are
associated with karst formations. In some cases, multiple species from distantly related
clades may be found throughout a single karstic archipelago [14,20], and even more
remarkable, different species from distantly related clades may even occupy the same small
karst formation [14,20]. The intent of this paper is to test, (1) whether or not the same
clades bearing the same specific habitat preferences presented by Grismer et al. [6] are
recoverable, (2) whether or not the relative frequencies of species in each habitat preference
category are not significantly different than that reported by Grismer et al. [6], (3) and
specifically, is the hypothesis that karstic landscapes are generators of biodiversity further
supported. We test these hypotheses by augmenting Grismer et al.’s [6] original phylogeny
of 243 species with an additional 101 species (a 44% increase in species coverage) and by
adding a new category of habitat preference. Additionally, with this significant influx of
species, we test the monophyly of the 31 different species groups recently designated by
Grismer et al. [11] based on their phylogeny of 310 named and unnamed species (an 11%
increase in species coverage).
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Figure 4. Representative ecotypes of the 10 different habitat preferences in the genus Cyrtodacty-
lus. Photographs by (A) L. Lee Grismer, (B) Steve J. Richards, (C,D) L. Lee Grismer, (E) Suranjan
Karunarathna, (F) L. Lee Grismer. (G) Evan S. H. Quah, (H,I) L. Lee Grismer, and (J) Peter Geissler.
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2. Materials and Methods
2.1. Habitat Preferences and Ecotypes

Here we refine some of the criteria for designating habitat preference used by Gris-
mer et al. [6] based on newly acquired data from recent publications and fieldwork. We
also add an additional habitat preference (sandstone), bringing the total to 10 as opposed
to nine categories (Table S1). Habitat preference for each species was coded as a discrete
character state and ascertained by integrating data from the literature, firsthand experience
of the authors, and personal communication with researchers familiar with particular
species. Grismer et al. [6] acknowledged that some of these categories could be further
subdivided (e.g., arboreal into branch, twig, and leaf), but those subdivisions become
far less defensible owing to a lack of detailed microhabitat information. In this regard,
many species can be considered data deficient, inasmuch as baseline information on their
ecological requirements are often limited to anecdotal observations made at the time of
their collection (e.g., [14]). The potential biases of using limited observations from a single
locality at one point in time to ascertain the habitat preference of an entire species does
not go unnoticed. However, in many cases, these are the only data available. Nonetheless,
judiciously vetted, natural history observations summarized across the literature coupled
with our own field observations and those of others, can provide a useful framework for
supporting robust, testable, downstream hypotheses regarding habitat preference. The
habitat preferences and their associated ecotypes bearing the same categorical names are
described below. Obvious morphological correlates associated with some ecotypes are
noted only for additional clarity.

1. General (Figure 4A). Species that use the majority of the microhabitats in their imme-
diate surroundings in whatever environment they inhabit. The microhabitats may
include rocks of all types (when present), logs, tree trunks (with or without holes and
crevices), and all vegetative structures of various dimensions, the ground, and human-
made structures in many cases. No particular microhabitat is notably preferred over
any other although some species may be most often observed in low vegetation.
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2. Trunk (Figure 4B). These are species generally found on the trunks and large branches
of large trees at varying heights and often take refuge in cracks, crevices, or holes in
the trunks. They may occasionally occur on large granite rocks but only if the rocks
are near the trees. These species are generally the largest and most robust species in
the genus [22–24]. None have been reported to have prehensile tails although some
species may coil the tail horizontally similar to that seen in arboreal species.

3. Karst (Figure 4C). These are generally more gracile species that are restricted to habi-
tats where limestone rock (karst) is present. Individuals use this substrate (including
cliff faces, small rocks, and boulders) as well as adjacent vegetation. If caves are
present, they will enter only into the twilight zone and usually no deeper than 50 m
from the entrance [14]. Despite what has been written about many karst-associated
species being cave species or cave adapted (e.g., [25]), none truly are and most are
more commonly found on the outside of caves (see below). These species do not
occur in habitats lacking karstic substrates.

4. Cave (Figure 4D). These are species that occur exclusively in the cave-like environ-
ments formed by large granite boulders. Open spaces between the boulders can be
quite extensive and contain areas where very little light penetrates. These species
rarely occur on the out-facing (i.e., the forest-side) surfaces of the boulders and for
the most part, are restricted to the spaces between the boulders at varying depths
below the surface of the ground in extremely low levels of illumination. These are
truly cave-adapted species with notably thin, gracile bodies, long limbs, flat heads,
large eyes, and faded color patterns [13,26,27].

5. Terrestrial (Figure 4E). These are species that generally occur only on the ground
and may take refuge beneath natural and human-made surface objects. They may
occasionally be found on the tops of small rocks (when present) or on the bases of
small trees and shrubs but never higher than 1 m above the ground. These species
are relatively small and notably squat, with short fat tails, thick heads, and short
digits [28,29].

6. Arboreal (Figure 4F). These are cryptically colored species [30,31] generally restricted
to small branches, leaves, trunks of varying sizes, and shrubs. Some may take refuge
beneath exfoliating bark often as high or higher than three meters above the ground.
These species are rarely observed on the ground or lower than 1.5 m above the ground.
In such instances, it is usually during windy and/or rainy nights (perhaps forced
down from higher up; [32]; authors pers. obs.) or during egg laying. All species
have a prehensile tail used as a climbing aid [31–33] that is often carried in a coiled,
elevated position.

7. Swamp (Figure 4G). These are species restricted to swampy habitats that use low, viny
vegetation, the trunks of small trees and shrubs, or small logs often above, but always
in close proximity to water. These species generally have large eyes with notably
reddish-orange irises [34,35].

8. Granite (Figure 4H). These are generally more robust, strongly tuberculated species
found in forested habitats bearing large granite boulders (not just small, scattered,
granite rocks or rocks of other types). Vegetation is often used, especially by hatch-
lings and juveniles, but individuals occur more commonly on the granite boulders
in all planes of orientation. These species do not occur in forested areas lacking
granite boulders.

9. Intertidal (Figure 4I). This category contains a single species that occurs exclusively
in the rocky intertidal zones of small islands in the Seribuat Archipelago off the
southeastern coast of Peninsular Malaysia and avoids nearby forested regions even if
they lack other species of Cyrtodactylus [19,36].

10. Sandstone (Figure 4J). This category was not included in Grismer et al. [6]. It contains
a single species endemic to a forested sandstone massif isolated in the lowlands of
northwestern Cambodia [11]. This species is known to forage only on the surface or
within crevices of sandstone rocks and was not observed on the nearby vegetation [37].
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This species is similar in body shape to closely related granite-associated species
(Grismer unpublished).

2.2. Mitochondrial DNA

The data set of Grismer et al. [6] was augmented with 107 additional ingroup species
resulting in a matrix composed of 344 described and undescribed species (i.e., species
identified in previous phylogenies but not yet described) of Cyrtodactylus (Table S1). A
phylogeny was constructed using 1474 base pairs of the mitochondrial gene NADH dehy-
drogenase subunit 2 gene and its flanking tRNAs (hereafter referred to as ND2). Agamura
persica, Bunopus tuberculatus, Hemidactylus angulatus, H. frenatus, H. garnotii, H. mabouia,
H. turcicus, Lialis jicari, Mediodactylus russowii, Mokopiriakau cryptozoicus, Pygopus nigriceps,
Sphaerodactylus torrei, Stenodactylus petrii, Tenuidactylus elongatus, Toropuku stephensi, and
Tropiocolotes steudneri—encompassing all other major gekkotan lineages—were used to
root the tree following Wood et al. [38]. Genomic DNA was isolated from liver or skeletal
muscle from new tissue samples stored in 95% ethanol, using standard phenol-chloroform-
proteinase K (final concentration 1 mg/mL) extraction procedures with subsequent iso-
propanol precipitation following Hillis et al. [39] or a SPRI magnetic-bead extraction
protocol (https://github.com/phyletica/lab-protocols/blob/master/extraction-spri.md;
accessed on 15 January 2021). The ND2 gene, with parts of adjacent tRNAs, was amplified
using a double-stranded Polymerase Chain Reaction (PCR) under the following conditions:
1.0 µL genomic DNA (10–30 µg), 1.0 µL light-strand primer (concentration 10 µM), 1.0 µL
(H5934, 5′– AGRGTGCCAATGTCTTTGTGRTT–3′, following [6]), heavy-strand primer
(concentration 10 µM), (L4437b, 5′–AAGCAGTTGGGCCCATRCC–3′, following [6]) 1.0 µL
dinucleotide pairs (1.5 µM), 2.0 µL 5 buffer (1.5 µM), MgCl 10× buffer (1.5 µM), 0.1 µL
Taq polymerase (5 u/µL), and 6.4 µL ultra-pure H2O. PCR reactions were executed on
Bio-Rad T100™ gradient thermocycler under the following conditions: initial denaturation
at 95 ◦C for 2 min, followed by a second denaturation at 95 ◦C for 35 s, annealing at 55 ◦C
for 35 s, followed by a cycle extension at 72 ◦C for 35 s, for 31 cycles. All PCR products
were visualized using 1.0% agarose gel electrophoresis. Successful PCR products were
sent to Evrogen® (Moscow, Russia), Genetech Sri Lanka Pvt. Ltd. (Colombo, Sri Lanka), or
Genewiz® (South Plainfield, NJ, USA) for PCR purification, cycle sequencing, sequencing
purification, and sequencing using the same primers as in the amplification step. Sequences
were analyzed from both the 3′ and the 5′ ends separately to confirm congruence between
reads. Forward and reverse sequences were uploaded and edited in GeneiousTM 2019.0.4
(https://www.geneious.com). Following sequence editing, the protein-coding region and
the flanking tRNAs were aligned using the MAFTT v7.017 [40] plugin under the default
settings in Geneious™ 2019.0.4 (https://www.geneious.com). Mesquite v3.04 [41] was
used to calculate the correct amino-acid reading frame and to confirm the lack of premature
stop codons in the ND2 portion of the DNA fragment.

2.3. Phylogenetic Analyses

A Maximum likelihood (ML) analysis was implemented using the IQ-TREE web-
server [42,43] preceded by the selection of substitution models using the Bayesian Infor-
mation Criterion (BIC) in ModelFinder [44] which selected TVM+F+I+G4 for the tRNAs
and codon position 1 and GTR+F+I+G4 for codon positions 2 and 3. One-thousand boot-
strap pseudoreplicates via the ultrafast bootstrap (UFB; [45]) approximation algorithm
were employed, and nodes having UFB values of 95 and above were considered strongly
supported [46]. We considered nodes with values of 90–94 as well supported.

A Bayesian inference (BI) phylogeny was estimated using Bayesian Evolutionary
Analysis by Sampling Trees (BEAST) version 2.4.6 [47] implemented in CIPRES (Cyber-
infrastructure for Phylogenetic Research; [48]). Input files were constructed in Bayesian
Evolutionary Analysis Utility (BEAUti) version 2.4.6 using a lognormal relaxed clock
with unlinked site models, linked trees and clock models, and a Yule prior and run in
BEAST version 2.4.6 [47] on CIPRES. bModelTest, implemented in BEAST, was used to

https://github.com/phyletica/lab-protocols/blob/master/extraction-spri.md
https://www.geneious.com
https://www.geneious.com
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numerically integrate over the uncertainty of substitution models while simultaneously
estimating phylogeny using Markov chain Monte Carlo (MCMC). MCMC chains were run
for 350,000,000 generations and logged every 35,000 generations. The BEAST log file was
visualized in Tracer v. 1.6.0 [49] to ensure effective sample sizes (ESS) were well above
200 for all parameters. A maximum clade credibility tree using mean heights at the nodes
was generated using TreeAnnotator v. 1.8.0 [50] with a burn-in of 1000 trees (10%). Nodes
with Bayesian posterior probabilities (BPP) of 0.95 and above were considered strongly
supported [51,52]. We considered nodes with values of 0.90–0.94 as well supported.

Grismer et al. [6] demonstrated that in their 243-species data set, the third codon
position contributed significantly to the strongly supported topological resolution of the
tree and showed no signs of codon saturation. In their 310-species tree, Grismer et al. [11]
demonstrated that their mito-nuclear tree constructed from ND2 and three nuclear genes
did not improve the resolution or the nodal support of the deep nodes in their ND2 tree.
Therefore, only ND2 was used in this analysis.

2.4. Ancestral State Reconstruction

In order to estimate the probability of each habitat preference at each node in the tree,
we employed a stochastic character mapping (SCM) analysis implemented in R [v3.4.3]
using the R package Phytools [53] on the BEAST tree converted to newick format. The
transition-rate matrix that best fit the data was identified by comparing corrected Akaike
Information Criterion (AICc) scores among alternate models using the R package ape
5.2 [54]. Three transition-rate models were considered: a 90-parameter model having
different rates for every transition type (the ARD model); a 45-parameter model with
equal forward and reverse rates between states (the symmetrical rates SYM model); and a
single-rate parameter model that assumes equal rates among all transitions (ER). Lastly, an
MCMC approach was used to sample the most probable 1000-character histories from the
posterior using make.simmap() and then summarized them using the summary() command.

3. Results

The ML analysis recovered essentially the same well to strongly supported tree
(Figure 6) recovered in Grismer et al. [11]. The same 31 monophyletic species groups
designated in Grismer et al. [11] were recovered here even though sampling in was greatly
expanded with additional species (Table S1). The ML analysis also recovered a new clade,
designated here as the tibetanus group, that is composed of Cyrtodactylus tibetanus, C. cf.
tibetanus, and C. zhaoermii. Cyrtodacylus cf. tibetanus and C. zhaoermii were unavailable
for the analysis of Grismer et al. [11], where C. tibetanus was recovered as the earliest
diverging member of the lawderanus group. Che et al. [55] recovered the same new clade in
a less inclusive (i.e., fewer species) mito-nuclear phylogeny. Although Grismer et al. [11]
recovered C. rubidus as the sister species of the lateralis group, it was not included in that
group because this relationship was well supported only in the ML analysis and not the
BI analysis. Here, it is placed in the lateralis group with high support in both analyses
(90 UFB, 0.90 BPP), a grouping also supported by the fact that all members of this group
have prehensile tails.
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Figure 6. Majority-rule consensus tree from ML bootstrap replicates of 344 species of Cyrtodactylus. Phylogeny based on
1474 base pairs of the mitochondrial gene ND2 illustrating the designation of 32 monophyletic species groups.

The BEAST analysis recovered a tree with generally strong nodal support throughout
with a 94.4% topological consistency (recovering 322 of the same 347 nodes) as the ML
tree (Figure 7). The AICc scores for the three transition-rate models were ARD = 1101.751;
SYM = 1035.445; and ER = 890.9552. The results of the SCM analysis were consistent with
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those of Grismer et al. [6] in that the ER model recovered large and small clades that
independently evolved the same habitat preferences throughout the geographic range
of the genus (Figure 7A). The SCM recovered a general habitat preference as being an-
cestral for not only the genus Cyrtodactylus but for all other major clades and ultimately
all other habitat preferences as well. Notably for this study, however, the two largest
independently evolved lineages of karst-associated species—the lineage composed of the
sadansinensis, yathepyanensis, oldhami, sinyineensis, and chauquangensis groups and the an-
gularis group—were also recovered, even with their expanded species contents. Their
parapatric distributions across much of western and northern Indochina coincide with
regions bearing the most extensive karstic landscapes (Figure 8). Other less diverse, inde-
pendently evolved karstic lineages, such as the linnwayensis group from the Shan Plateau
in Myanmar and a karst-associated subclade from the Thai-Malay Peninsula in the pul-
chellus group, were also recovered and associated with regions rich in karstic habitats
(Figures 7A and 8). Several isolated instances of the independent evolution of karst habitat
preference are scattered across the tips of the tree, representing species from Borneo (C. cav-
ernicolus, C. limajalur, C. muluensis), Cambodia (C. laangensis), China (Cyrtodactylus sp. SYS
r1232), Indonesia (C. darmandvillei), Myanmar (C. aunglini, C. chrysopylos, C. myaleiktaung),
Papua New Guinea (C. tanim), Peninsular Malaysia (C. evanquahi, C. guakanthanensis, C.
gunungsenyumensis, C. metropolis, C. lenggongensis, C. sharkari), and Vietnam (C. sp. nov., C.
yangbayensis) (Figure 7A).
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Figure 7. (A) Stochastic character map of the 10 habitat preferences on a maximum clade credibility BEAST phylogeny
showing the probability of the ancestral habitat preference at each node and the major clades of karst-associated species
groups and their general geographic distribution. (B) The habitat preference of each species, and the number of species in
each habitat preference category. (C) Pie chart showing the percentage of species bearing each of the 10 habitat preferences.
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Figure 8. Distribution of the major clades of the karst-associated species groups throughout Indochina. Inset illustrates their
co-distributions, with the geographic areas bearing the most extensive karstic landscapes.

These data are consistent with those of Grismer et al. [6] in showing that the frequency
of karst-associated species far out-numbers that of any other specific habitat preference
and is nearly two and one-half times more prevalent than any other specific habitat pref-
erence in that it contains 25.0% of the species followed by trunk (11.0%), granite (9.2%),
terrestrial (8.4%), arboreal (3.8%), cave (2.0%), swamp (1.4%), and intertidal and sandstone
(0.2%; Figure 7B). In Grismer et al. [6], granite-associated species comprised the second
highest habitat preference and trunk-associated species the third. That ranking has been
reversed here. The percentage of species with a karst habitat preference was 29.6% in
Grismer et al. [6] but dropped to 25.0% here. We posit that this drop of nearly 5% is a direct
result of our inability to explore unsurveyed karstic regions on the Shan Plateau and in the
Salween Basin of Myanmar during 2020 due to COVID-19.

4. Discussion

The analysis presented here is based on the most complete phylogeny of the genus Cyr-
todactylus to date with an increase of 101 species from that of Grismer et al. [6] and 35 from
that of Grismer et al. [11]. The hypotheses marshaled by Grismer et al. [6] concerning the
evolution of habitat preference is supported here in that there was no notable change in
the frequencies of species bearing different habitat preferences across the genus—even
with the addition of 107 species. More specifically, however, a karst habitat preference
retained a higher frequency than that of any other specific habitat preference (25.0% versus
0.2–11%), supporting the hypothesis that these landscapes are platforms for the generation
of biodiversity. This pattern is particularly strong in Indochina and less so on islands
throughout the Indo-Australian Archipelago, reflecting the sharp contrast in the extent
of karstic landscapes between these regions (Figure 8). These data clearly underscore
the importance of karstic habitats to this hyper-diverse genus and continue to amplify
the work of many other authors indicating that the high levels of biodiversity and range-
restricted endemism in karstic habitats rivals that of most other habitats throughout the
tropics (see discussions in [1,4,5,10,56–61]). The sad irony is that, although these are some
of the most imperiled ecosystems on the planet due to unregulated and unsustainable
quarrying practices, only 1% of these terrains throughout Asia are afforded any form of
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legal protection. Therefore, the diversity of the karst-associated species in general—and
Cyrtodactylus in particular—are, for the most part, without legal protection. Unfortunately,
the immense financial returns from cement manufacturing makes the challenge of karst
conservation difficult and many governments from developing nations that are willing to
overlook sustainable quarrying policies in order to expand their economy [1]. Continued
exploitation of karstic habitats for limestone shows no signs of abating.

5. Conclusions

This study echoes the results of Grismer et al. [6] in that karstic landscapes are ex-
ceedingly important for maintaining Cyrtodactylus diversity and serve as foci for their
speciation and maintenance of their diversity. Referring to them as “imperiled arks of
biodiversity” is somewhat misleading as these are ecological platforms for speciation that
not only continue to generate the most speciose, independent, radiations of the Gekkota,
but do so across a broad range of other taxonomic groups (e.g., [7–10,62]). Referring to
them as “imperiled arks of biodiversity” instead of centers for speciation draws attention
away from their importance as generators of biodiversity in an era of biodiversity crisis
and could potentially lessen the urgency for legislative conservation measures.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/d13050183/s1, Table S1: Species, habitat preference with supporting references, species group
designations, and GenBank accession numbers for specimens used in the SCM analysis. Species can
be cross-referenced to Figure 6 by their GenBank no.
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