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coastal waters 

Quinten Vanhellemont *, Kevin Ruddick 
Royal Belgian Institute of Natural Sciences, Operational Directorate Natural Environments, Vautierstraat 29, 1000 Brussels, Belgium   

A R T I C L E  I N F O   

Keywords: 
Coastal waters 
Atmospheric correction 
Turbidity 
Chlorophyll-a 
Validation 
OLCI 
ACOLITE 
PANTHYR 

A B S T R A C T   

The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument 
(OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived 
parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). 
This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system 
(PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the 
deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. 
The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACO-
LITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and 
SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the 
Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with 
the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27%) and absolute errors 
(Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 
442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms 
that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing 
imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 
709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model 
and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used 
most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67% of matchups), 
indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algo-
rithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band 
(MARD 15 and 17%), where their reflectances were also very close to the in situ observations (MARD 11%). For 
the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band- 
ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain 
the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not 
at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ 
radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. 
With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, 
it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. 
The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open 
source license.   

1. Introduction 

Ocean colour remote sensing has become a mature science, with 

operational products for the open ocean produced daily on a global scale 
for a number of sensors, at spatial resolutions of a few hundred metres to 
a few kilometres. The standard algorithms used for the atmospheric 
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correction (AC) have a long heritage, developed in the 1980’s and 
1990’s for satellite sensors such as the Coastal Zone Colour Scanner 
(CZCS), the Sea-viewing Wide Field-of-view Sensor (SeaWiFS), the 
Moderate Resolution Imaging Spectroradiometer (MODIS) and the Me-
dium Resolution Imaging Spectrometer (MERIS). These AC algorithms 
assume for the open ocean that the signal observed in the Near-InfraRed 
(NIR) part of the spectrum is entirely caused by atmospheric and air- 
water interface effects, and extrapolate the signal to the visible wave-
length bands using a suite of aerosol models (Gordon and Wang, 1994; 
Antoine and Morel, 1999). Large parts of the ocean colour observations 
are contaminated by severe sun glint, and by a new approach to the 
problem, i.e. modeling the water signal and fitting the atmosphere and 
interface effects, POLYMER achieved excellent performance and 
dramatically increased data availability over the oceans, by effectively 
removing sun glint (Steinmetz et al., 2011). POLYMER has been adapted 
as the AC of choice for the Ocean Colour Climate Change Initiative, 
which aims to make long term time-series from multiple sensors 
consistent and inter-comparable, in particular for the derived 
chlorophyll-a concentration (Müller et al., 2015; Sathyendranath et al., 
2019). 

It is well known that in turbid or highly productive waters, the 
assumption of negligible water reflectance in the NIR breaks down, and 
a number of approaches have been suggested to deal with non-zero NIR 
water reflectance. Typically, ocean colour processing schemes adopt an 
assumption of spatially constant aerosol type and a simple water model 
(Ruddick et al., 2000; Hu et al., 2000; Goyens et al., 2013), or an iter-
ative estimation of non-zero NIR (Stumpf et al., 2003; Bailey et al., 2010) 
for processing turbid waters. A Bright Pixel Atmospheric Correction 
(BPAC) has been integrated in the ground segment processor for MERIS 
and the Ocean and Land Colour Instrument (OLCI) processing, based on 
the work of Moore and Lavender (1999) and Lavender et al. (2005). The 
use of combined atmosphere and water retrievals using Neural Network 
(NN) approaches has been frequently suggested for more complex water 
or aerosol types (Chomko and Gordon, 1998; Schiller and Doerffer, 
1999; Jamet et al., 2005; Brajard et al., 2006; Doerffer and Schiller, 
2007; Schroeder et al., 2007; Hieronymi et al., 2017). Methods that have 
an explicit water model can however be challenged by target water types 
that are not in their training dataset or model, and careful assessment 
may be required for specific applications. For the processing of 
extremely turbid waters, the use of ShortWave InfraRed (SWIR) bands at 
1.6 and 2.2 μm has been quite successful (Wang and Shi, 2005; Gao et al., 
2007; Vanhellemont and Ruddick, 2015; Ibrahim et al., 2019), albeit at 
the cost of introducing additional noise (Werdell et al., 2010). Not all 
sensors have these SWIR bands, they are notably absent on MERIS and 
OLCI, and other methods may be needed for processing of extremely 
turbid waters. Gossn et al. (2019) proposed an alternative method to 
process OLCI data over extremely turbid waters, using the BaseLine 
Residual (BLR) from three pairs of spectrally close bands to separate 
aerosol and water contributions, and taking advantage of the new 1020 
nm SWIR band. 

Recently, the Dark Spectrum Fitting (DSF) atmospheric correction 
has been proposed for metre- and decametre-scale satellite sensors over 
turbid and inland waters (Vanhellemont and Ruddick, 2018; Vanhelle-
mont, 2019a, 2019b, 2020). The DSF does not assume which band has 
negligible water reflectance, and may even use non-water targets to 
estimate the atmospheric path reflectance, similar to the maximum 
aerosol optical depth estimated by Guanter et al. (2010). Depending on 
the aerosol model, the impact of residual target reflectance in the NIR 
can in fact have larger impacts than residual target reflectance in the 
Blue bands, due to the magnification of NIR errors towards the visible 
bands by the extrapolative fitting methods, and the general shape of 
atmospheric path reflectance. ACOLITE/DSF for decametre scale sen-
sors, specifically those on Landsat 8 and Sentinel-2, has found many 
applications in coastal and inland waters, such as the estimation of 
turbidity (Braga et al., 2020; Balasubramanian et al., 2020; Ciancia 
et al., 2020), bathymetry, (Bué et al., 2020; Caballero and Stumpf, 2020) 

and algal bloom monitoring (Molkov et al., 2019; Saberioon et al., 
2020). 

In the present paper, the adaptation of the DSF for S3/OLCI pro-
cessing of turbid coastal and inland waters is introduced, and the per-
formance of a number of S3/OLCI products is evaluated using an 
autonomous pan-and-tilt hyperspectral radiometer (PANTHYR, Van-
steenwegen et al. (2019)) deployed in Belgian coastal waters. The pro-
cessing of S3/OLCI is of particular interest to remote sensing of optically 
complex coastal waters due to its very complete spectral coverage at 
moderate spatial resolution (300 m), with 21 bands of which about 16 
will provide useful surface reflectances between 400 and 1020 nm. Full 
resolution products from the standard water processing, including the 
Bright Pixel correction (L2-WFR), as well as top-of-atmosphere L1 data 
processed with freely available processors, POLYMER (Steinmetz et al., 
2011), C2RCC (Brockmann et al., 2016), SeaDAS/l2gen (Gordon and 
Wang, 1994; Bailey et al., 2010), and ACOLITE/DSF (present paper), are 
evaluated using in situ matchups. The overall performance of the 
different algorithms is discussed, and the error budgets and their im-
plications are explored for typical turbid water applications such as the 
retrieval of turbidity and chlorophyll-a concentration. 

2. Data and methods 

2.1. Study area 

The Belgian Coastal Zone (BCZ) is a relatively shallow (<50 m) and 
well-mixed shelf sea, connected to the North Sea to the north, and the 
English Channel to the west (Ruddick and Lacroix, 2006). It is charac-
terised by a relatively high suspended sediment concentration, with a 
gradient from several hundreds of g ⋅ m− 3 nearshore to <1 g ⋅ m− 3 in the 
offshore waters, inversely related to the bathymetry. Turbidity in For-
mazine Nephalometric Units (FNU), shows about a 1:1 relationship to 
the suspended sediment concentration, and both measurements are of 
interest to users in the BCZ (Nechad et al., 2009, 2010; Neukermans 
et al., 2012). Strong tidal currents occur (exceeding 1 ms− 1), with the 
tidal ellipse oriented along the coast from south-west to north-east, with 
currents flowing north-east during flood tide. The tidal resuspension of 
sediments is the main cause of the high turbidity in the nearshore area 
(Fettweis and Van den Eynde, 2003; Fettweis et al., 2007). In near-bed 
measurements, the sediment concentration reaches the highest con-
centration at the end of ebb and the beginning of flood, as a result of 
resuspension during current maxima (Baeye et al., 2011). The same 
pattern is observed during neap and spring tides, although at lower 
concentration during neap tide (Baeye et al., 2011). Annually recurring 
spring and summer phytoplankton blooms, generally consisting of di-
atoms are observed, with important spatial variability throughout the 
BCZ (Rousseau et al., 2006; Muylaert et al., 2006; Lacroix et al., 2007). 
In recent years, the blooms have been occurring earlier, likely in 
response to sea surface temperature increases and changes in nutrient 
outputs (Desmit et al., 2020), and the two bloom peaks may have 
merged to one long growing season (Raitsos et al., 2014). Blooms of 
Phaeocystis globosa generally occur in between the diatom blooms, with a 
4–13 week duration, and in most years, the biomass of the Phaeocystis 
blooms greatly exceeds that of the diatom blooms (Breton et al., 2006; 
Gypens et al., 2007). The use of multispectral reflectance information is 
not sufficient to distinguish which species is causing a bloom (Astoreca 
et al., 2009), but this can perhaps be done qualitatively (Lubac et al., 
2008), or through evaluation of other characteristics, such as the pres-
ence of foam lines on higher resolution satellite imagery. Absolute 
chlorophyll-a concentration can be retrieved from satellite remote 
sensing data however, and is already important for Belgium’s eutro-
phication reporting requirements for the European Commission’s Ma-
rine Strategy Framework Directive (MSFD, 2008/56/EC and addenda). 
This reporting requires the estimate of the 90th percentile of 
chlorophyll-a in a European nation’s waters, something that is generally 
only achievable through the use of satellite remote sensing data (Van der 
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Zande et al., 2019; Gohin et al., 2019). In the BCZ, in situ measurements 
are performed every few months for about ten reference stations, and 
hence remotely sensed information provides crucial spatial and tem-
poral components for Belgium’s MSFD reporting. 

2.2. In situ data 

In situ data was collected using a prototype PANTHYR (Van-
steenwegen et al., 2019) deployed on the Blue Innovation Platform 

Research Tower 1 (RT1), just in front of the port of Oostende 
(51.2464◦N, 2.9193◦E). Fig. 1 shows the location of RT1 in the turbid 
coastal waters around Oostende, and the structure of the tower. PAN-
THYR has two TriOS RAMSES radiometers mounted on a pan-and-tilt 
head, one for up- and downwelling spectral radiances, and one with a 
cosine collector to measure spectral irradiance. The PANTHYR measures 
autonomously every 20 min at programmed relative azimuth angles to 
the sun. In the present study, measurements were made at a 270◦ azi-
muth angle. A measurement cycle consists of sequential scans of 3×
spectral irradiance (Ed), 3× downwelling radiance (Ld), 11× upwelling 
radiance (Lu), 3× Ld and 3× Ed. Such a measurement cycle for a single 
azimuth angle takes about 1 min. Measurements are calibrated, dark 
current corrected, and resampled to a common wavelength grid, from 
350 to 900 nm at 2.5 nm steps. Individual scans are subjected to a 
quality control as in Ruddick et al. (2006) and then averaged to provide 
a single equivalent measurement, if at least 9/11 Ed and 5/6 of the Ld and 
Lu scans pass the quality control. The water-leaving radiance reflectance, 
ρw is then computed using: 

ρw =
π⋅Lw

Ed
, (1)  

where Lw is the water-leaving radiance: 

Lw = Lu − ρf ⋅Ld, (2)  

where ρf is the effective Fresnel coefficient linearly interpolated from 
(Mobley, 1999) for the sun zenith angle at the time of measurement, and 
the wind speed retrieved from the National Centers for Environmental 
Prediction (NCEP) 1 degree global model. No NIR correction is 

Fig. 1. Left: the location of the Blue Innovation Platform RT1 just in front of Oostende plotted on a 12 × 12 km subset of the Sentinel-2A/MSI image taken 2020-03- 
31, and right: photos of the platform and the PANTHYR installation provided by Dieter Vansteenwegen (VLIZ). 

Fig. 3. Timeseries of PANTHYR data convolved to the OLCI RSR for four bands. Black/grey triangles denote the position of the 46/27 matchup subsets. Tide height 
above the TAW reference level as provided by Meetnet Vlaamse Banken (at station’Ostend Harbor’) is plotted in grey. 

Fig. 2. 5, 50 (solid), and 95th percentiles of the PANTHYR data convolved to 
the OLCI RSR, for the full archive (grey) and the matchups (black). 
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performed and no water reflectance model is assumed in the in situ data 
processing. ρw data were finally convolved to the relative spectral 
response (RSR) functions of the OLCI instruments on Sentinel-3 A and B 
(Sentinel-3 CalVal Team, 2016). In the period from 2019-12-11 to 2020- 
07-15, 1058 PANTHYR measurements made at 270◦ relative azimuth 
passing quality control were available (Figs. 2 and 3). Waters at RT1 are 
rather turbid, with the 5–95 percentiles of ρw 0.053–0.137 at 560 nm, 
0.024–0.109 at 665 nm, and 0.021–0.090 at 709 nm, with median 
values respectively 0.094, 0.060, and 0.052. The spectral percentiles are 
plotted in Fig. 2 for the full data archive and the obtained matchups (see 
further). 

The surface sediment concentration in the near-shore Belgian coastal 
zone is mainly driven by tidal resuspension and horizontal advection. 
The tide measured in the port of Oostende is plotted in the background 
of Fig. 3 to show the neap-spring cycle. Some effects of the neap-spring 
tidal cycle can be seen in the in situ measured reflectance, as can impacts 
of strong wind events. Lower reflectances are observed just before, and 
higher reflectances just after neap tide, related to the resuspension of 
material that settled during the neap tide (Fettweis and Van den Eynde, 
2003). Some reflectance peaks are associated with strong wind events, 
for example the mid February, end of March, and mid May storms 
(Fig. 4) all cause local peaks in the water reflectance. 

A significant advantage of the PANTHYR/RT1 dataset, compared to 
AERONET-OC datasets (Zibordi et al., 2009) normally used for valida-
tion, is that the hyperspectral instrument allows validation of all OLCI 
VNIR bands in the range 400–900 nm, for OLCI specifically including the 
400 nm and the various NIR bands that are not available from 
AERONET-OC and hence not yet validated. The RT1 location is in suf-
ficiently turbid waters for a measurable water reflectance in the range 
700–900 nm (Figs. 2 and 3). 

2.3. Satellite data 

The Ocean and Land Colour Instrument (OLCI) is a multispectral 
radiometer carried on board Sentinel-3A (launched in 2016) and B 
(launched in 2018) with 21 bands in the 400–1020 nm spectral range 
with high signal-to-noise ratio at an approximately 300 m spatial reso-
lution. The two satellites in polar orbit can provide a revisit time of less 
than two days at the equator, with higher overpass frequencies at higher 
latitudes. S3/OLCI imagery for the RT1 site was retrieved as top-of- 
atmosphere (L1) full resolution (FR, 300 m) data from the Copernicus 
Open Access Hub (https://scihub.copernicus.eu), as processed with In-
strument Processing Facility (IPF) IPF-OL-1-EO version 06.08, and 
baseline water products (L2-WFR) were retrieved from the Copernicus 
Online Data Access (CODA) hosted by EUMETSAT (coda.eumetsat.int). 
The following processing algorithms were evaluated:  

• L2-WFR: Baseline product from EUMETSAT/CODA as processed with 
IPF-OL-2 version 06.13 (EUMETSAT, 2019). Standard masking was 
used, i.e. excluding INVALID, LAND, CLOUD and CLOUD_AMBIG-
UOUS pixels.  

• POLYMER: POLYMER (v. 4.13) with current default settings, i.e. 
using the Park and Ruddick (2005) water model. The bitmask dataset 
was used to keep only pixels passing the recommended quality check, 
i.e. pixels with no mask (bitmask = 0) or pixels where flags 10 
(CASE2) and 11 (INCONSISTENCY) were set.  

• C2RCC-ALT: The C2RCC ALTERNATIVE NN as provided in SNAP 7.0 
with default settings. The c2rcc_flags dataset was used to reject pixels 
where flags 1, 3, or 4 (Rtosa_OOR, Cloud_risk, Iop_OOR) were set.  

• SeaDAS: SeaDAS/l2gen (9.5.0-V2019.3, git clone dated 2020-07-28) 
was used with default settings for OLCI, i.e. using the 2 band 779/ 
865 multi-scattering algorithm with Relative Humidity based model 
selection (Ahmad et al., 2010) and iterative NIR correction (Bailey 
et al., 2010). Standard flagging was used, i.e. an external land mask 
and a threshold on the NIR reflectance for cloud masking (ρt 865 nm 
> 0.027).  

• SeaDAS-ALT: An alternative processing for SeaDAS/l2gen, using the 
2 band 865/1020 multi-scattering algorithm. Standard flagging was 
used - see above. Disabling the chlorophyll-a based iterative NIR and 
BRDF corrections (aer_opt = − 1, and brdf_opt = 3) did not provide 
outputs at 865 nm, so these options were kept as default (aer_opt =
− 2, and brdf_opt = 7).  

• ACOLITE: A new OLCI version of the DSF was implemented in 
ACOLITE (details in Appendix A) and imagery was processed to 
water reflectances using a fixed aerosol optical thickness τa retrieved 
from a 36 × 36 km region of interest (ROI) centred on RT1. Auto-
mated full scene processing is supported, and an analysis of other 
processing settings regarding the spatial variability of τa is given in 
Appendix B. 

2.4. Matchups 

Matchups were identified as satellite overpasses with in situ data 
measured within 30 min, either (1) with measurements bounding the 
overpass, or if no bounding measurements available, (2) the closest 
measurement. In situ data from (1) were linearly interpolated from the 
bounding measurement times to the overpass time, data from (2) were 
used as is. Due to the high temporal variability of suspended sediments 
at the site, the reflectance can change rapidly, and the use of interpo-
lated data is preferred. Due to large spatial variability around the site at 
short spatial scales, a single pixel containing the station coordinates was 
extracted from the satellite data. For completeness the ACOLITE 
matchups are also repeated for the 3 × 3 box mean in Supplementary 
Data 1, Table S1. Automated quality control was performed using the 

Fig. 4. Timeseries of average wind speed at 10 m (red) and wind direction (blue) from Meetnet Vlaamse Banken station’Ostend - weather station’. 10 min data is 
plotted in the background, with solid foreground lines the 48 h moving average. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 5. A few selected matchups of Sentinel- 
3/OLCI and the PANTHYR deployed at RT1. 
The RGB composites use surface reflectances 
at 665, 560, 490 nm scaled from 0 to 0.15 in 
the 8 bit R, G, B channels. The open red 
circle on the RGB composites is centred on 
RT1. The title for each plot shows the aero-
sol optical thickness at 550 nm (τa) and 
whether the Continental (C) or Maritime (M) 
aerosol model was used for ACOLITE/DSF 
processing. (For interpretation of the refer-
ences to colour in this figure legend, the 
reader is referred to the web version of this 
article.)   
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Fig. 6. Scatterplots for the 46 matchups between ACOLITE/DSF and PANTHYR, 400–674 nm. S3A is represented by triangles, S3B by dots. The red line is the RMA 
regression line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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single pixel values. Matchups were rejected using thresholds on the top- 
of-atmosphere reflectance (ρt), to exclude clouds, objects, or surface 
effects such as floating materials, foam and strong glint: pixels with ρt >

0.4 in any band were rejected, as well as pixels with ρt 1020 nm > 0.03. 
Reduced Major Axis (RMA) regression lines, and Pearson’s linear cor-
relation coefficient (r) were computed, as well as the Mean Average 
Difference (MAD), Root Mean Squared Difference (RMSD), and the 
Mean Absolute Relative Difference (MARD) between in situ (x) and 
satellite data (y), with n the number of matchups: 

MAD =
∑n

i=1

yi − xi

n
, (3)  

RMSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(yi − xi)
2

n

√

, (4)  

MARD =
∑n

i=1

|yi − xi|

0.5⋅(yi + xi)⋅n
. (5) 

These metrics emphasise that both the satellite and in situ data are 
estimations of the true value. Noise in the satellite reflectance was 
computed using a Laplace operator using approximated second 
derivatives: 

∇2(ρ[i, j] ) = ρ[i+ 1, j] + ρ[i, j+ 1] − 4⋅ρ[i, j] + ρ[i − 1, j] + ρ[i, j − 1], (6)  

where ρ is the reflectance image, and i and j are the pixel coordinates in 
image space. The operator was not computed for pixels where any of the 
required pixels were masked. The Laplace operator gives the sum of 
second derivatives in both directions, and is not sensitive to smooth 

gradients in the data, e.g. a near-to-offshore turbidity gradient. It does 
pick up pixel-to-pixel variability, e.g. sharp fronts and noise, and is 
commonly used in image processing and computer vision for noise (Tai 
and Yang, 2008) and edge detection (Van Vliet et al., 1989; Wang, 
2007). It can be used to detect noise in remotely sensed images after e.g. 
subtracting an edge map (Corner et al., 2003). Since the noise levels are 
quite different across the processors, a consistent edge map could not be 
generated. For the present application of estimating noise levels across 
many images, the Laplace operator is used directly for a relatively clear 
location, away from the edges resulting from turbidity fronts. 

2.5. Parameter retrieval algorithms 

Water turbidity (T) is computed using the algorithm of Nechad et al. 
(2009): 

T =
AT ⋅ρw

1 − ρw/CT
, (7)  

with ρw at 709 nm, and calibration parameters taken at 710 nm from 
Nechad et al. (2016): AT = 498.52 (FNU), and CT = 0.1892. The con-
centration of turbid water chlorophyll-a (C) is computed using the 
commonly used RedEdge algorithm of Gons et al. (2005): 

C =
RM⋅(0.70 + bb) − 0.40 − b1.05

b

ϕ*
a

, (8)  

where RM is the 709/665 ρw ratio, ϕa* the chlorophyll-a specific ab-
sorption at 665 nm, here taken as 0.016 m2 ⋅ mg− 1, and bb the total 
backscatter (m− 1) as estimated from ρw at 779 nm: 

Fig. 7. Same as Fig. 6 for 681–885 nm.  
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bb =
1.61⋅ρ779

w

0.082 − 0.6⋅ρ779
w

. (9)  

3. Results and discussion 

3.1. Matchups 

In the deployment period between 2019-12-11 and 2020-07-15, 392 
images were available from the Data Hub, about equally distributed 
among Sentinel-3A (192) and Sentinel-3B (200). According to the 
criteria listed above, 46 common matchups (S3A: 18, S3B: 28) were 
identified for L2-WFR and ACOLITE/DSF. Of these 46 matchups, 10 had 
negative reflectance at 400 nm from either L2-WFR (5) or ACOLITE (6), 
and 7 with negative reflectance at 412 nm (L2-WFR: 2, ACOLITE: 5). 
These spectra are not removed as it could bias the matchups to those 
with conditions where one processor may outperform others. Including 
the flagging from POLYMER and C2RCC reduced these to 39 matchups 
(S3A: 17, S3B: 22), and by including SeaDAS/l2gen the common subset 
was further reduced to 27 matchups (S3A: 9, S3B: 18). The common 
dataset contains only 13 matchups where none of the processors retrieve 
negatives anywhere in the spectrum (S3A: 6, S3B: 7). The subset of 
matchups is rather representative of the observed reflectance range at 
RT1, with a slight bias to the more turbid waters (Fig. 2). Selected 
matchups between PANTHYR and the six processors are shown in Fig. 5, 
a full set of matchups and the data are provided in Supplementary Data 1 
(Fig. S1, matchup plots) and 2 (CSV database with convolved PANTHYR 
data). The panels in Fig. 5 show from top to bottom, a general decrease 
in reflectance due to a decrease in suspended sediments from winter to 
summer. High reflectances are still observed in March (2020-03-03 and 
2020-03-20), with a Green peak reflectance at about 0.15. The third and 
fourth panels show spectra near the height of the spring bloom (2020- 
04-22) and in a second, more patchy bloom, observed at the end of June 
(2020-06-20), with Green peak reflectance respectively about 0.08 and 
0.04. Both show a strong Red band chlorophyll-a absorption feature, and 
a RedEdge reflectance peak almost equaling the Green. For the 
matchups, the ranges of turbidity are about 20–100 FNU, and 
chlorophyll-a concentration of 0–60 mg ⋅ m− 3, consistent across the 
different subsets of matchups. As expected, the band automatically 
selected for τa determination across the 46 ACOLITE/DSF matchups, 
tended to the longer wavelengths, with a visible band (i.e. the 443 nm 
band) used in only 4 cases (9%). For the remaining 42 matchups bands 
>750 nm were used: 768 nm (6 cases, 13%), 885 nm (5 cases, 11%) and 
1020 nm (31 cases, 67%). 

3.2. Reflectance retrieval 

Scatter plots for the full matchup dataset (46 scenes) for ACOLITE/ 
DSF are shown in Figs. 6 and 7. An increase of the RMSD is found to-
wards the Blue and UltraViolet (UV) wavelengths, i.e. from about 0.005 
at 865 nm to about 0.02 at 400 nm. These errors are consistent with the 
increase of atmospheric path reflectance from the NIR to the Blue. The 
MARD is <15% for all bands between 490 and 709 nm, reaching <8% 
for bands at 560 and 620 nm with the largest observed reflectance range. 
MARD are highest (>50%) for the shortest (400 and 412 nm) and 
longest wavelengths (865 and 885 nm), as a result of low data ranges, 
and, in the Blue, the difficult atmospheric correction. The remaining 
bands (442, 754, and 779 nm) show <30% MARD. Except for the bands 
at 709, 754, and 779 nm, the MAD are in general negative indicating a 
slight overestimation of the atmospheric path reflectance, and hence an 
underestimation of the water reflectance. 

A comparison of all six processors is shown in Fig. 8 for a common 
subset of 27 matchups for three of the generally best performing bands, 
560, 665, and 709 nm, which are typically used for retrieval of turbidity 
and turbid water chlorophyll-a. For these bands, the best performances 
are found for L2-WFR (10.4–13.6% MARD) and ACOLITE (7.4–11.2% 
MARD), with ACOLITE giving better results at 560 and 665 nm, and both 
having nearly equal performance at 709 nm. The ACOLITE results for 
this subset are close to the full 46 matchup results (Figs. 6-7), with a 
slightly better performance for the 27 matchup subset, likely as more 
challenging scenes are filtered out here. Both configurations of SeaDAS 
give decent results, with MARD ≤25%, and SeaDAS-ALT outperforming 
the default SeaDAS configuration for these turbid waters, likely because 
of the inclusion of the 1020 nm band. C2RCC gives a MARD between 25 
and 30%. Note that the slope of the C2RCC regression line is well below 
1 at 665 nm, indicating an underestimation of Red reflectance, which is 
especially pronounced at high reflectances. This effect can also be 
observed in the second panel of Fig. 5 (2020− 03− 21), where no Red 
band dip - characteristic of chlorophyll-a absorption - is observed in the 
in situ data, or in any of the processors except C2RCC. This is an indi-
cation that the C2RCC NN is limited by its training dataset, and that for 
these turbid waters, in order to minimise fitting errors, the NN has to 
resort to using the highest reflectance waters in its training dataset, 
which happen to have this Red absorption dip. This effect may explain 
the poor performance of the “case 2” water products in the MERIS 3rd 
reprocessing in turbid waters, where “winter blooms” were observed in 
the turbid coastal waters of the southern North Sea (Vanhellemont, 
2012). Finally, POLYMER shows the highest MARD (40–57%), and gives 
significantly lower reflectances compared to in situ measurements, and 
indicates that the water reflectance model in POLYMER is unable to 
represent the higher reflectances of the turbid waters in the BCZ. 

Fig. 8. Scatter plots for the 560 nm (left), 665 nm (middle) and 709 nm (right) bands for the 27 common matchups.  
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The error metrics are represented spectrally for the common 
matchup datasets of 39 scenes (L2-WFR, POLYMER, C2RCC, ACOLITE, 
solid lines) and 27 scenes (including SeaDAS and SeaDAS-ALT, dashed 
lines) in Fig. 9. Two general shapes of the spectral errors are observed, 
one from the processors that constrain only weakly the water reflectance 
(L2-WFR, SeaDAS, and ACOLITE), and another from the processors that 
impose strong constraints on the water reflectance through a full VIS- 
NIR water reflectance model (POLYMER, C2RCC). For the first class, 
the RMSD increases from the NIR to the Blue, consistent with higher 
atmospheric signals to be removed in the shorter wavelength bands. The 
MARD shows a minimum in the visible bands, typically between 490 and 
709 nm, i.e. in the bands with the highest observed reflectances, with 
sharp increases of relative errors to the Blue (high atmospheric signal) 

and the NIR (low water-leaving signal). For the second class, the RMSD 
peaks in the visible bands, with largest (absolute) MAD also found in the 
visible bands. The MARD is a bit flatter for this class, with only slight 
increases towards the NIR and Blue/UV. All three metrics have pro-
nounced spectral features for the second class, where the water model in 
the processor presumably deviates from the observed reflectances, e.g. a 
lower Green reflectance peak for POLYMER, and differences in the Red/ 
RedEdge bands for C2RCC. In terms of MARD, ACOLITE gives the best 
performance across the bands between 442 and 681 nm, while the L2- 
WFR has lower relative errors between 709 and 885 nm. The RMSD 
shows a similar pattern, with ACOLITE giving more scatter at 400 nm 
compared to L2-WFR. All processors give negative MAD across the 
spectrum, apart from a handful of bands, indicating a tendency of 
overcorrecting for atmospheric effects, or a too low top-of-atmosphere 
calibration. ACOLITE gives lowest (absolute) MAD of around 0.002, 
with SeaDAS-ALT and C2RCC having a lower bias at 400 nm, and L2- 
WFR and SeaDAS-ALT having very comparable biases in the NIR. Note 
that system vicarious calibration gains are applied only for L2-WFR/S3A 
processing (EUMETSAT, 2019), and no gains are applied for L2-WFR/ 
S3B, SeaDAS and ACOLITE processing. POLYMER applies by default 
the gains obtained from S3A processing, and for C2RCC a common set of 
vicarious calibration gains are applied for S3A and B. For these pro-
cessors constraining the water reflectance, the relative band-to-band 
calibration is of more importance than the absolute calibration. A 
summary of the two best performing methods, L2-WFR and ACOLITE is 
given in Table 1 (400–674 nm) and 2 (681–885 nm), for the full 46 
matchup database that both methods provided results for. Summary 
statistics for the 13 scenes in the common dataset where no processor 
gave any negatives are provided in Supplementary Data 1, Tables S2 and 
S3. 

3.3. Derived parameters 

Fig. 10 shows time-series of ρw 665 and 709 nm, two bands that are 
frequently used to derive water turbidity or total suspended matter 
(Nechad et al., 2009, 2010), and chlorophyll-a (Gons et al., 2005; 
Gilerson et al., 2010; Moses et al., 2012). Due to the high observation 
density of OLCI from combining S3A/B data, effects of tidal and wind 
driven resuspension are preserved in the satellite data. Generally the 
reflectance is higher at 665 nm than at 709 nm, except in the period from 
April to mid-May, where there is a sharp decrease in 665 nm reflectance, 
while the 709 nm reflectance remains at similar levels to before - this 
effect can also be seen more clearly in Fig. 3. This pattern is caused by 
the spring phytoplankton bloom, with the associated increase of 
chlorophyll-a absorption. Fig. 11 shows time-series of chlorophyll-a 
concentration, as derived by the RedEdge algorithm of Gons et al. 
(2005), showing a phytoplankton bloom occurring from about April to 
mid-May, and a second, short but intense bloom at the end of June, as is 
systematically observed in these waters, e.g. (Breton et al., 2006). The 
bloom causing the peak near the end of the time-series (2020-06-22) is 
visible as a dark patch on the last panel of Fig. 5, and the full extent of 
the bloom is plotted in the Graphical Abstract to this paper. 

The two processors constrained by a water model (POLYMER and 
C2RCC) show a significant underestimation of the Red and RedEdge 
reflectance (Figs. 8, 9, and, 10). Despite the underestimation of reflec-
tance, with biases at 665 and 709 nm of about − 0.03 and − 0.02, 
POLYMER retrieved the chlorophyll-a absorption feature, and was able 
to track the bloom development. It gives slightly higher chlorophyll-a 
values during the peak of the spring bloom, caused by the different 
magnitude of the biases at 665 and 709 nm “enhancing” the Red ab-
sorption feature. C2RCC provided significant chlorophyll-a values 
before the spring bloom, and during the blooms, the RedEdge peak as 
returned by C2RCC is reduced, and hence it gives a less pronounced 
difference in retrieved chlorophyll-a between non-bloom and bloom 
periods. For these turbid waters, even in the absence of a chlorophyll-a 
absorption feature, C2RCC provides a water reflectance spectrum 

Fig. 9. Spectra of MAD (top), RMSD (middle), and MARD (bottom) for the 
common subsets of 27 (dashed) and 39 (solid lines) matchups. 
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including such a feature. This is presumably a result of the nature of the 
training dataset and the error minimisation procedure inherent to the 
NN. In the presence of a strong absorption feature, C2RCC will give a 
reduced and flattened RedEdge to the chlorophyll-a absorption dip. 
These effects can be seen in the example matchups, respectively in the 
2nd and 3rd panel of Fig. 5, and are also clearly visible in the time-series 
of Fig. 11, where C2RCC consistently overestimates the chlorophyll-a, 
except during the April–May and end of June blooms, where it re-
trieves similar values to before the bloom. 

These results are summarised in the scatter plots shown in Fig. 12 
and Tables 3 and 4 for turbidity (Nechad et al., 2009) and chlorophyll-a 
(Gons et al., 2005) estimated from the reflectance data. For turbidity, 
L2-WFR and ACOLITE give the best performance, with around 15% 
MARD, and biases of 1–2 FNU and RMA slopes of 0.96–1.01. This is no 
surprise, as these processors gave the performance for the retrieved 
reflectance in the band itself (Fig. 8). The other processors show a sig-
nificant underestimation of turbidity with biases of − 6 to − 20 FNU and 
RMA slopes of 0.39 (POLYMER) and 0.54–0.71 (others). For 
chlorophyll-a, the matchups were further reduced from 27 to 17, as 
POLYMER retrieved a negative ρw 779 nm, making the bb impossible to 
estimate (Eq. (9)), and SeaDAS-ALT produced 9 matchups with negative 
ρw 779 nm. C2RCC retrieves a RMA slope of 0.32, with an offset of 12.5 
mg ⋅ m− 3 and a bias of − 4 mg ⋅ m− 3, showing significant overestimation at 
low and underestimation at high chlorophyll-a concentrations. L2-WFR 
gives rather high slope (1.45) and bias (11 mg ⋅ m− 3), and the other 
processors have slopes between 1.1 and 1.3 and biases of 5–11 mg ⋅ m− 3, 
indicating a general overestimation of chlorophyll-a compared to the 
values estimated from the in situ measurements. SeaDAS and SeaDAS- 
ALT show the lowest MAD and MARD, likely due to their better per-
formance at lower chlorophyll-a concentration, as only 5 of the common 
matchups have chlorophyll-a > 35 mg ⋅ m− 3. L2-WFR and ACOLITE are 
however able to provide double the number of observations with similar 
biases to SeaDAS. The different reflectance biases of POLYMER at 665 
and 709 nm observed before, result in a rather high bias (11 mg ⋅ m− 3) 
and offset (4 mg ⋅ m− 3) in the RedEdge chlorophyll-a retrieval. 

3.4. Spatial noise 

Noise can be introduced or amplified in per-pixel processing, due to 
extrapolation of noise from longer wavelength bands, and from model 
fitting differences in adjacent pixels. Since ACOLITE uses a spatially 
fixed τa, or a smoothed interpolated τa to retrieve per-pixel atmospheric 
parameters, its results are smoother, and closer to the band signal-to- 
noise specifications, than other processors. In this section the noise 
level in the products from the two best performing processors in the 
matchup analysis is examined, i.e. ACOLITE and L2-WFR. An example of 

the L2-WFR and ACOLITE outputs are given in Fig. 13, showing speckled 
noise in the L2-WFR product. A comparison of noise levels was per-
formed using a Laplace operator (Eq. (6)) and extracted from the pixel 
containing 51.357◦N, 2.835◦E, a location with relatively clear waters, 
avoiding turbidity fronts. Scenes not covering this location, or having ρt 
1020 nm > 0.03 anywhere in the 3 × 3 pixel box were excluded, leaving 
36 of the 46 matchup scenes. Fig. 14 shows an estimate of noise- 
equivalent reflectance in 16 OLCI bands at top-of-atmosphere (black), 
after L2-WFR (vermillion) and ACOLITE (grey) processing. ACOLITE 
results are only slightly noisier than the top-of-atmosphere input re-
flectances, where L2-WFR has considerably higher noise levels, espe-
cially for the bands <560 nm, and increasing with atmospheric path 
reflectance. ACOLITE/DSF does not smooth or amplify the noise present 
in the TOA data, which can also be observed in the bottom panel of 
Fig. 13. L2-WFR has slightly lower noise than the input reflectances at 
885 and 1020 nm, possibly as a result of assumptions made on these 
bands during atmospheric correction. 

3.5. Perspectives 

In the present study, the baseline Sentinel-3 OLCI product (L2-WFR) 
has been confirmed to work well in the turbid Belgian coastal waters, as 
compared to 46 matchups with hyperspectral in situ measurements 
across winter and summer seasons (Tables 1 and 2). ACOLITE gave 
lower errors in the visible wavelengths compared to L2-WFR, and pro-
vides products with significantly less noise. POLYMER and C2RCC did 
not show good performance, the former due to the water model giving 
too low reflectances for these turbid waters, and the latter due to poor 
performance of the Red and RedEdge bands, i.e. by introducing artificial 
chlorophyll-a absorption features, or flattening the features that are 
present. Even though the OLCI processing in SeaDAS has not been 
formally evaluated by NASA/OBPG, the SeaDAS performance is 
reasonably good, albeit outperformed by L2-WFR and ACOLITE in these 
waters. The performance of a single band turbidity algorithm was of 
course closely related to that band’s specific results for each processor, 
while a RedEdge band-ratio chlorophyll-a algorithm proved to be more 
robust to various (typical) atmospheric correction errors (Fig. 12 and 
Tables 3 and 4). Only the C2RCC chlorophyll-a retrieval was problem-
atic due to (1) unrealistic Red band absorption features, and (2) flat-
tening of the RedEdge peak being introduced by the NN fitting. Results 
presented here show that ACOLITE/DSF gives best performance for 
visible band reflectances (7–14% MARD from 490 to 681 nm), and is 
tied with L2-WFR for providing turbidity based on 709 nm reflectance 
(15–17% MARD), and does provide robust chlorophyll-a concentration 
(MARD 37–57%) estimates. 

Results obtained by Renosh et al. (2020), show that the baseline 

Table 1 
Comparison of in situ and satellite ρw for the full set of matchups from 400 to 674 nm. m and b are the RMA regression slope and offset.  

λ (nm) Processor m b r2 MAD (− ) RMSD (− ) MARD (%) 

400 L2-WFR 1.475 − 0.031 0.248 − 1.39e-02 2.00e-02 163.3 
ACOLITE 2.042 − 0.048 0.034 − 1.11e-02 2.56e-02 134.7 

412 L2-WFR 1.343 − 0.026 0.346 − 1.34e-02 1.89e-02 439.4 
ACOLITE 1.586 − 0.030 0.069 − 8.16e-03 2.14e-02 63.1 

442 L2-WFR 1.106 − 0.018 0.609 − 1.30e-02 1.77e-02 60.7 
ACOLITE 1.025 − 0.007 0.372 − 5.30e-03 1.62e-02 27.3 

490 L2-WFR 1.037 − 0.014 0.818 − 1.14e-02 1.57e-02 28.1 
ACOLITE 0.930 0.000 0.779 − 4.70e-03 1.24e-02 13.6 

510 L2-WFR 1.039 − 0.013 0.848 − 1.02e-02 1.47e-02 21.0 
ACOLITE 0.938 − 0.000 0.833 − 5.31e-03 1.19e-02 11.2 

560 L2-WFR 1.063 − 0.014 0.857 − 7.97e-03 1.33e-02 11.7 
ACOLITE 0.998 − 0.004 0.856 − 4.01e-03 1.10e-02 7.4 

620 L2-WFR 1.048 − 0.010 0.867 − 5.84e-03 1.09e-02 10.9 
ACOLITE 0.988 − 0.002 0.874 − 3.53e-03 9.35e-03 7.8 

665 L2-WFR 1.061 − 0.009 0.896 − 4.86e-03 9.75e-03 13.4 
ACOLITE 1.022 − 0.005 0.899 − 2.89e-03 8.56e-03 10.0 

674 L2-WFR 1.067 − 0.010 0.898 − 4.94e-03 9.76e-03 14.6 
ACOLITE 1.032 − 0.005 0.902 − 2.94e-03 8.53e-03 10.8  
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Fig. 10. Time-series plots of ρw at 665 nm (top) and 709 nm (bottom) for the different processors. In situ PANTHYR data is plotted in red. The grey background shows 
the tide as measured by Meetnet Vlaamse Banken at station’Ostend Harbor’. The second panel in each plot shows the difference between the satellite and the in situ 
measured ρw. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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product L2-WFR, C2RCC and POLYMER provide adequate results for the 
moderately turbid Atlantic coastal waters in France, albeit with an un-
derestimation of Green and Red reflectances compared to their reference 
satellite products. The underestimation of these processors is consistent 
with what we found in the present study, and their Figs. 9 and 12 show 
significant underestimation by those algorithms in the most turbid parts 
of the Gironde estuary. Mograne et al. (2019) reported the best perfor-
mance for POLYMER and C2RCC in the eastern English Channel and 
French Guyana coastal waters, as compared to a number of common 
matchups (n = 14) with in situ measured reflectances using a hand-held 
ASD FieldSpec. In the present study we find good performance also for 
L2-WFR, but for C2RCC, and especially, POLYMER, the Green and Red 
reflectances are significantly underestimated. The differences between 

our results and those of Mograne et al. (2019) are caused by differences 
in reflectance ranges, and hence water turbidity, between the studies: 
where we observed ρw 709 nm of 0.02–0.09, Mograne et al. (2019) re-
ported much lower values, with ρw 709 nm <0.05, and the bulk of their 
points (9/14) <0.02. 

4. Conclusions  

• The Dark Spectrum Fitting (DSF) atmospheric correction algorithm 
in ACOLITE has been adapted and automated for processing of 
Sentinel-3/OLCI data, and it is here demonstrated and evaluated for 
the turbid waters in the Belgian Coastal Zone. 

Fig. 11. Same as Fig. 10 but for chlorophyll-a concentration computed using the algorithm of Gons et al. (2005).  

Fig. 12. Comparison of turbidity and chlorophyll-a concentration computed from satellite and in situ reflectances for 27 (turbidity) and 17 (chlorophyll-a) matchups. 
Statistics are shown in Tables 3 and 4. 
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Fig. 13. Top: ρw 709 nm from the baseline L2-WFR product (left) and as processed by ACOLITE (right) for a subset of the S3A image of 2020-03-22. Middle: Noise 
calculated using a Laplacian (absolute value) for L2-WFR and ACOLITE. Bottom: Noise for the TOA and ACOLITE results. Pixels are masked using a 0.03 threshold on 
ρt 1020 nm. 
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• A single automated hyperspectral PANTHYR system, deployed at 
Research Tower 1 near Oostende, provided 46 matchups with the 
OLCI on Sentinel-3A (18) and Sentinel-3B (28), in about 7 months 
time, and data for all bands from 400 to 900 nm. This is an un-
precedented dataset for evaluating OLCI performance in turbid 
coastal waters, with median reflectances observed over the 46 
matchups of 0.094 at 560 nm, 0.060 at 665 nm, and 0.052 at 709 nm.  

• Six processors have been evaluated for mapping the turbid Belgian 
coastal waters using Sentinel-3/OLCI data, as compared to a number 
of autonomous hyperspectral in situ measurements. The best results 
are obtained for the processors that only weakly constrain the water 
reflectance, in particular the baseline L2-WFR (with a water model 
only in the NIR) and ACOLITE (only assuming non-zero water 
reflectance in the darkest pixels), with the latter providing the best 
performance in the visible bands (<15% MARD with a 0.01 RMSD 
and a near-zero MAD), with the lowest noise levels.  

• The two processors based on a full visible to NIR water reflectance 
model (POLYMER and C2RCC) showed a significant underestimation 
of the visible reflectance. C2RCC gave poor performance in partic-
ular for the 665 and 709 nm reflectance, either by introducing arti-
ficial Red band chlorophyll-a absorption, or by reducing the presence 
of a real RedEdge peak. These effects are both problematic for typical 
eutrophication monitoring applications in turbid waters. At present 
these processors cannot be recommended for turbid water moni-
toring using OLCI, and will likely show better performance with 
better adapted specific water models and training data.  

• Using the turbid water Red/RedEdge chlorophyll-a algorithm of 
Gons et al. (2005), all processors except C2RCC could reliably track 
in time the development of two blooms, a spring bloom in April–May 
and a summer bloom at the end of June. This algorithm was found to 
be robust to the absolute performance of the atmospheric correction, 

as long as the relative signal in both Red and RedEdge bands is 
maintained. 

• For mapping of turbidity or suspended particulate matter concen-
tration in moderately turbid waters, the use of 560–709 nm bands is 
recommended (Nechad et al., 2009, 2010; Novoa et al., 2017) and 
hence ACOLITE and L2-WFR can be recommended for this applica-
tion, both giving comparable MARD at 709 nm (11%) and ACOLITE 
performing best at 560 nm (7%) and 665 nm (10%), and both pro-
cessors giving similar scatter (RMSD of around 0.01). Slightly higher 
errors are found for retrieved turbidity due to the non-linearity of the 
turbidity algorithm, i.e. 15 and 17% for 709 nm derived turbidity. 
The lower spatial noise of ACOLITE is also seen in the turbidity 
product.  

• Due to the high combined observation density of Sentinel-3A/B, the 
turbidity changes in the Belgian coastal waters during neap-spring 
tide cycles and as a result of strong wind events, could be observed 
using satellite remote sensing. Sentinel-3A/B is the only satellite 

Table 2 
Same as Table 1 for bands 681–885 nm.  

λ (nm) Processor m b r2 MAD (− ) RMSD (− ) MARD (%) 

681 L2-WFR 1.062 − 0.009 0.890 − 4.16e-03 9.36e-03 13.0 
ACOLITE 1.029 − 0.005 0.892 − 2.53e-03 8.46e-03 10.3 

709 L2-WFR 0.979 0.001 0.843 1.48e-04 7.97e-03 10.5 
ACOLITE 0.968 0.004 0.829 1.69e-03 8.47e-03 11.2 

754 L2-WFR 0.976 0.000 0.733 − 5.24e-04 5.40e-03 18.0 
ACOLITE 0.973 0.001 0.665 6.16e-04 6.10e-03 22.8 

779 L2-WFR 0.928 0.000 0.620 − 1.65e-03 6.63e-03 21.2 
ACOLITE 0.969 0.001 0.654 − 1.86e-04 6.20e-03 23.5 

865 L2-WFR 0.963 − 0.001 0.542 − 1.18e-03 4.46e-03 23.9 
ACOLITE 1.108 − 0.004 0.344 − 2.19e-03 6.20e-03 48.4 

885 L2-WFR 0.917 − 0.001 0.500 − 1.73e-03 4.16e-03 26.8 
ACOLITE 1.188 − 0.006 0.194 − 3.54e-03 6.96e-03 77.1  

Fig. 14. Spectral noise-equivalent reflectance as computed using a Laplacian 
on a relatively clear location in the BCZ. Solid lines show the median noise from 
36 scenes, the dashed lines the interquartile range. 

Table 4 
Same as Table 3 but for chlorophyll-a concentration, with 36 common matchups 
(with ρw 779 nm > 0) from the full dataset also given for L2-WFR and ACOLITE.   

n m b r2 MAD RMSD MARD 

(mg ⋅ 
m− 3) 

(mg ⋅ 
m− 3) 

(%) 

L2-WFR 17 1.445 0.526 0.844 11.228 16.332 44.4 
36 1.069 5.582 0.800 6.784 10.802 72.0 

POLYMER 17 1.269 4.327 0.941 10.792 12.839 44.8 
C2RCC- 

ALT 
17 0.435 11.859 0.515 − 1.740 13.670 54.2 

SeaDAS 17 1.326 − 0.615 0.851 7.223 12.388 26.6 
SeaDAS- 

ALT 
17 1.140 1.373 0.878 4.749 8.692 27.2 

ACOLITE 17 1.178 3.230 0.918 7.518 9.952 36.9 
36 1.192 3.008 0.955 6.363 8.273 56.7  

Table 3 
Comparison of in situ and satellite derived turbidity computed from the 709 nm 
band for the common subset of 27 matchups. For L2-WFR and ACOLITE the full 
matchup dataset performance is also provided.   

n m b r2 MAD RMSD MARD 

(FNU) (FNU) (%) 

L2-WFR 27 0.957 3.205 0.849 1.324 8.274 14.8 
46 0.974 1.311 0.839 − 0.015 9.773 15.4 

POLYMER 27 0.387 7.322 0.717 − 19.528 24.436 52.8 
C2RCC-ALT 27 0.535 6.892 0.681 − 13.472 18.913 36.5 
SeaDAS 27 0.627 6.142 0.767 − 10.203 15.260 25.4 
SeaDAS-ALT 27 0.713 6.555 0.678 − 6.042 13.512 21.3 
ACOLITE 27 0.937 4.681 0.900 1.926 6.887 13.5 

46 1.014 1.187 0.827 1.907 10.495 16.6  
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mission that at present can provide spatially and temporally resolved 
information about coastal phytoplankton blooms in the BCZ. 
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Appendix A. Adaptation of ACOLITE/DSF to Sentinel-3/OLCI 

The Dark Spectrum Fitting (DSF) atmospheric correction algorithm was originally developed for the processing of metre-scale sensors for aquatic 
applications in inland and coastal waters (Vanhellemont and Ruddick, 2018; Vanhellemont, 2019b), but it performed well also for decametre-scale 
sensors (Vanhellemont, 2019a, 2020). In this Appendix, the general structure of the DSF is presented, as well as adaptations for OLCI processing. The 
observed top-of-atmosphere reflectance, ρt is modelled as (Vermote et al., 1997): 

ρt

Tg
= ρpath +

ρs⋅TdTu

1 − ρs⋅S
, (A1)  

where Tg is the gas transmittance, taken as the product of ozone, oxygen and water vapour transmittances, ρpath the atmospheric path reflectance, Td 
and Tu the total atmospheric transmittances in the sun-surface and surface-sensor paths, S the spherical albedo of the atmosphere, and ρs the surface 
reflectance of the target. Ozone and water vapour concentrations are taken from the ancillary data provided in the OLCI metadata, as well as the 
atmospheric pressure at sea-level. For elevated targets, the pressure is derived using the provided altitude dataset. ρs is modelled as the sum of the 
water-leaving radiance reflectance, ρw, and the light reflected at the air-water interface, ρSky. The DSF assumes there is a target in the scene or subscene 
with negligible water-leaving signal in at least one of the sensor’s spectral bands. In each band, the ρt reflectance in the darkest pixel, ρdark, in a given 
scene or subscene is used for fitting the ρpath, excluding the 400 and 412 nm bands, as well as bands with low Tg (<0.85). The observed reflectance for 
that target and spectral band is then fitted to path reflectance modelled with 6SV (Vermote et al., 1997; Kotchenova et al., 2006) for two aerosol 
models (Continental and Maritime), for pressure ranges between 500 and 1100 hPa, and the air-water interface reflectance modelled using OSOAA 
(Chami et al., 2015) as in Vanhellemont (2020): 

ρSky =
π⋅LSky

Ed
, (A2)  

where LSky is the radiance reflected at the air-water interface into the viewing direction, and Ed the irradiance just above the surface, modelled for the 
same aerosol models and range of τa. Bands where the τa fitted to the ρdark is ≤0.001, i.e. the minimum in the LUT, are rejected for the retrieval of τa. No 
explicit foam or sun glint corrections are made. For each aerosol model, the band giving the lowest positive τa is used, and the aerosol model giving two 
bands with lowest difference in the retrieved τa is selected. Appendix B explores the options to use a fixed or tiled estimation of τa. 

As the individual detectors (i.e. pixels) on OLCI have different spectral responses - the smile effect - a two component smile correction is adopted, 
based on the MERIS method (Bourg et al., 2008) implemented in SeaDAS/l2gen and the SNAP toolbox. First, for each band, subscript i, the per-pixel 
top-of-atmosphere radiances (Lt) are converted to reflectance using the per-detector extraterrestrial irradiance (F0′), and converted back into radiance 
using the nominal band F0: 

Lsmile(1) =
Lti

F0′

i
⋅F0i − Lti. (A3) 

This difference makes up the largest part of the smile effect, but a second correction is performed based on the observed Lt in two bounding/ 
adjacent bands, assuming the spectral variation can be linearly approximated from bounding bands: 

Lsmile(2) = R⋅
λi − λ

′

i

λ2 − λ1
⋅F0′

i , (A4)  

where λ is the nominal wavelength, λ′ the per-pixel wavelength, and subscripts 1 and 2, the two reference bands. R is the computed per pixel 
reflectance difference in the two reference bands: 

R =
Lt2

F0′

2
−

Lt1

F0′

1
. (A5) 

For each band, both components computed using Eqs. (A3) and (A4) are added to the observed Lt, to get a smile-corrected nominal band Lt, which is 
then converted to ρt using the nominal band F0. 
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Appendix B. Processing with fixed or tiled τa 

Most ocean colour atmospheric correction algorithms are typically applied on a per-pixel basis, correcting a single observed ρt spectrum at a time. 
In contrast, the DSF works on a spatial subset of data in order to retrieve representative atmospheric parameters, which is especially useful for 
correcting difficult targets, e.g. extremely turbid or inland waters, and to reduce the amplification of noise during the atmospheric correction. The 
exploitation by DSF of the fact that atmospheric variability generally has a longer length scale than a single pixel has already proven very useful for 
higher resolution sensors with low signal:noise (Vanhellemont and Ruddick, 2018; Vanhellemont, 2019a, 2019b, 2020), but is also useful for the 
better-specified OLCI sensor. The DSF can be applied using a spatially uniform or tiled estimation of aerosol optical thickness (τa at 550 nm), a choice 
that depends on the size of the region of interest (ROI) and application. In this Appendix, the fixed (i.e. spatially uniform) and tiled options are 
described, and the performance analysed for various settings, in order to make an optimal choice for processing Sentinel-3/OLCI imagery for the turbid 
waters in the BCZ.

Fig. A1. MARD between ACOLITE/DSF processed OLCI and in situ measurements for different ROI sizes for the fixed (F-) and tiled (V-) DSF processing for 46 
matchups. The black solid line shows the 36 × 36km ROI with fixed processing as used in the main paper. 

In the spatially uniform τa processing mode, a single model and τa is retrieved for the ROI, and the atmospheric correction parameters are then 
retrieved from the LUT using the per-pixel geometry. Fig. A1 shows the MARD with 46 matchups with in situ PANTHYR measurements for different 
ROI sizes using fixed processing (F- prefix). Different subsets (6 × 6, 12 × 12, 24 × 24, 36 × 36, and 48 × 48 km) centred on RT1 provided quite 
consistent results, with a minimum MARD for the 12 and 24 km ROIs, with a larger MARD for the 6, 36 and 48 km ROIs. The larger MARD are caused 
by the selection of less representative ρdark in the DSF, i.e. brighter pixels for the 6 km ROI, and darker pixels for the 36 and 48 km ROIs. The presence 
of darker pixels in the larger ROI is not necessarily bad, but they may provide a less representative (i.e. lower) estimate of the path reflectance. The 12 
and 24 km ROI seem to provide the optimal presence of dark targets, while the likelihood of even darker targets increases in a larger search radius, 
causing a potential underestimation of the path reflectance in the larger ROIs. Compared to the 12 and 24 km ROIs, the 6 km ROI is too small to 
provide similar targets with negligible surface signal, and hence the path reflectance is overestimated. Note that the 6, 36, and 48 km ROIs still provide 
very good results, their performance is just not as good compared to the 12 and 24 km ROIs. 

For tiled processing, the scene is divided into square tiles of given dimensions, and the DSF applied individually to each tile, retrieving an aerosol 
model and τa per tile. For tiles where no result is found, the results from the closest neighbouring tile are used. To avoid tile edges in the final product, 
the retrieved τa per model, and the selected model per tile, are linearly interpolated from the tile centres to each pixel, and smoothed using a Gaussian 
filter with a 24 pixel (7200 m) kernel standard deviation. This provides a per-pixel estimate of τa per model, as well as a per-pixel model weighting 
factor. The atmospheric parameters are then retrieved using the per-pixel geometry, the retrieved τa for both aerosol models, and are finally linearly 
weighted using the per-pixel model weighting factor. MARD for different tile sizes (12, 24 and 36 km) are also plotted in Fig. A1 (results with the V- 
prefix). An example of the tiled processing for a subscene over the southern North Sea is provided in Fig. A2.

Fig. A2. An example of the 36 × 36 km tiled processing of an OLCI scene (S3B, 2020-04-20) over the southern North Sea, showing (left) the lowest retrieved τa at 
550 nm, (middle) the interpolated and smoothed ρpath at 560 nm, and (right) the RGB surface reflectance composite. 
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In comparison with 46 RT1 matchups, the 36 km tiled processing gives the best results, in terms of MARD (Fig. A1), and (absolute) MAD (not shown 
separately). The RMSD (i.e. scatter in the matchup comparison) is slightly higher for the tiled processing compared to the fixed processing at 
wavelengths >490 nm (not shown separately), as a result of the model mixing and spatial interpolation of atmospheric parameters. Small differences 
are found between the 24 km and 36 tiling grids, while for the 12 km tiling grid higher MAD and RMSD were retrieved, with about the same MARD. For 
processing of complete full resolution top-of-atmosphere (L1-FR) scenes or large areas of interest, the tiled processing with a 36 km tiling grid is 
recommended. For local studies, e.g. at estuarine scale, a fixed processing may provide better (less noisy) results. In the main paper a ROI of 36 × 36 
km was processed, and hence the fixed τa option was used, even though here lower errors were retrieved for the 36 km tiled processing. Both pro-
cessing options are fully automated in ACOLITE and the choice may depend on a specific application. 

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2021.112284. 
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