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Abstract 

1 The alpine newt, Ichthyosaura alpestris, is very sensitive to habitat destruction 

and alteration which has led to declining populations across Europe. As this 

species is protected through the Bern Convention, it is essential to have a 

comprehensive understanding of its habitat requirements to ensure proper 

conservation measures. This research provides quantitative insights, which are 

generally lacking for this species. 

2 To fill in this knowledge gap, we trained, validated and optimized classification 

tree models based on data on local aquatic habitat conditions from 125 farmland 

ponds scattered over Belgium where the alpine newt commonly occurs. To 

obtain user-friendly and representative models, data was pre-processed and 

stratified after which different degrees of pruning were applied for model 

optimization. We assessed the models’ technical performance via the 

percentage of correctly classified instances (%CCI) and Cohen’s κ. In order to 

check the model’s applicability for management, we predicted alpine newt 

occurrence with an independent dataset. 

3 The most robust and reliable model revealed that fish presence was the major 

driving factor predicting the occurrence of alpine newts followed by the 

thickness of the sludge layer. The threshold value for the sludge layer below 

which habitats were suitable was found to be 15 cm, thereby providing 

quantitative information for decision makers. Furthermore, our results indicated 

that the amount of sludge was associated with the level of eutrophication rather 

than being a result of natural succession. 
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4 Regarding management practices, it is first and foremost advised to assure the 

absence of fish in ponds designated for the conservation of alpine newts. 

Temporary ponds are therefore considered to be suitable ponds as they are 

generally fish-less. Moreover, sludge accumulation in ponds that periodically 

dry out is reduced compared to permanent pond ecosystems, thereby mitigating 

eutrophication effects in an agricultural landscape. Finally, we promote to 

install buffer strips around the freshwater body to reduce nutrient run-off from 

the terrestrial environment. 

Keywords 

Alpine newt, habitat suitability models, classification tree, machine learning, 

independent validation, integrated pond management 
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Introduction  1 

Across Europe, salamander or urodelan populations are facing dramatic declines and 2 

extinctions. Almost 30% of all European urodelan species are categorized as 3 

vulnerable, endangered or critically endangered which is the second highest of all 4 

European vertebrates (cf. 37% for freshwater fishes, 19.4% for reptiles, 16.5% for 5 

mammals, 12.6% for birds and 7.5% for marine fishes) (BirdLife International, 2015; 6 

Cox & Temple, 2009; Freyhof & Brooks, 2011; Nieto et al., 2015; Temple & Cox, 7 

2009; Temple & Terry, 2007). Urodeles are exposed to several threats. Human induced 8 

habitat loss and degradation are the most prominent stressors at present (Hof et al., 9 

2011). Many of the European salamanders require stagnant water bodies, such as ponds, 10 

for their reproduction (Temple & Cox, 2009). Besides, the presence of such ecosystems 11 

in for example farmland, which covers approximately half of the European territory, 12 

contribute significantly to general regional biodiversity (Scheffer et al., 2006). 13 

Agricultural intensification and urbanisation are major causes for pond loss and 14 

degradation due to e.g. eutrophication or pesticide pollution (Curado et al., 2011; 15 

Temple & Cox, 2009). Furthermore, the destruction of ponds and other small landscape 16 

elements, such as shrubs, hedges and rough vegetation enhances spatial 17 

homogenization and fragmentation of a landscape, thereby reducing connectivity 18 

amongst habitats, which is essential for sustaining healthy salamander populations 19 

(Hehl-Lange, 2001). Next to habitat alteration, urodelans are threatened by the fungal 20 

disease caused by the species Batrachochytrium dendrobatidis (hereafter: Bd) and 21 

Batrachochytrium salamandrivorans (hereafter: Bsal). Note that the severity of the 22 

disease depends on the affected species. For example, fire salamanders, Salamandra 23 

salamandra, are lethally susceptible to Bsal, independent of the dose, while alpine 24 
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newts, Ichthyosaura alpestris, shows a dose-dependent Bsal disease course, making 25 

them moderately susceptible. Due to their dispersal abilities and their frequent co-26 

occurrence with the highly susceptible fire salamander, alpine newts are seen as notable 27 

vectors of chytridiomycosis (Stegen et al., 2017). On top of that, they are considered to 28 

be the most consistently infected species in the wild for Bd, thus further enhancing their 29 

disease carrying and transmission potential (Spitzen-Van Der Sluijs et al., 2014). 30 

The alpine newt is currently listed as a “least concern” species in the IUCN Red List of 31 

Threatened Species owing to its wide distribution, low specificity in habitat 32 

requirements and presumed large populations. The species and its habitat are also 33 

lawfully protected by the Bern Convention, a European treaty aiming at conserving 34 

Europe’s natural heritage. Nonetheless, a continuously decreasing trend is observed for 35 

European populations (Arntzen et al., 2009). Habitat destruction and fish introduction 36 

are the most prominent factors responsible for the population declines (Arntzen et al., 37 

2009).  38 

The alpine newt requires both suitable terrestrial and aquatic habitats. Generally, they 39 

are absent from large water bodies and rivers, which often contain fish. Most other 40 

water bodies, such as (garden) ponds, temporary pools, ditches, fens, (concrete) cattle 41 

drinking basins and even ruts can be occupied for reproduction. On land, they are 42 

present in a wide variety of habitats ranging from forests over pastures and gardens to 43 

heavily disturbed lands where they use rocks, wood and trash as hiding places during 44 

hibernation. They seem to avoid large cultivated agricultural areas and prefer deciduous 45 

forested zones owing to the presence of multiple hiding places (Arntzen et al., 2009; 46 

van Delft, 2009). Even though knowledge is available about the habitat this species 47 
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inhabits, quantitative information, which is useful for management strategies of natural 48 

environments, is lacking.  49 

Decision tree models have widely been used for quantitative habitat suitability analyses, 50 

owing to their ease of interpretation and reliability (Boets et al., 2010; Everaert et al., 51 

2011; Hoang et al., 2010; Zarkami et al., 2010). The classification tree is a purely data-52 

driven ecological model describing the non-linear statistical relationship between a 53 

nominal response variable and numerical predictors that are split according to certain 54 

threshold values (Van Echelpoel et al., 2015). In this way, the occurrence of a certain 55 

species can be linked to environmental conditions.  56 

Here, we aim to: (1) develop a classification tree based habitat suitability model relating 57 

local pond conditions (predictor variables) to alpine newt presence/absence (response 58 

variable); (2) evaluate the obtained model using a combination of technical criteria, 59 

expert knowledge and validation with independent field data; (3) provide practical 60 

information for decision makers regarding the implementation of the model in 61 

management.  62 
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Materials and Methods 63 

Study area 64 

A habitat suitability decision tree model was trained, optimized and validated using 65 

available data from 125 farmland ponds in Belgium and Luxemburg that were sampled 66 

in 2008 (cf. Lemmens et al., 2018). Ponds were distributed over five biogeographical 67 

regions (i.e. Gutland, Chalk region, Sand region, Polders and Loam regions). Each 68 

region had 5 clusters (within 38 km2) of 5 randomly selected ponds. In this way, ponds 69 

within each cluster shared a similar regional species pool.  70 

Additional field data were collected from 18 ponds in the province of East Flanders 71 

between 8 and 13 May 2017 (Figure 1). The purpose of this new data was to 72 

independently test the model’s applicability. For the latter, ponds were selected based 73 

on information on newt presence obtained from local stakeholders (land owners and 74 

nature conservation organisations). We aimed to equally include ponds with and 75 

without alpine newts in order to test the model’s prediction power for both situations. 76 

Four of the selected ponds were located in rural urban areas and nine ponds were 77 

situated in nature reserves. These natural areas are characterised by wet meadows, 78 

brushwood and swampy forests. Furthermore, we selected five ponds in a more 79 

agricultural environment (i.e. arable land and pasture).  80 
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 81 

Figure 1: Map of the study area with the sampling regions Polders (A), Sand 82 

region (B), Loam region (C), Chalk region (D) and Gutland (E) each containing 83 

five clusters represented by the black dots. Every cluster comprises five sampling 84 

sites (ponds). The sites that were additionally sampled in 2017 are indicated in 85 

green. 86 

Field data collection and sample analyses 87 

Decision tree model training data consisted of morphometric, physical-chemical, and 88 

biological data. These were collected once for each of the 125 farmland ponds during 89 

the summer of 2008 based on the methodology of Declerck et al. (2006). A detailed 90 

description can be found in Appendix S1 in the Supporting Information. Pond sampling 91 

started with visually gathering information about pond characteristics. The model 92 

excluded data from land use and structural pond connectivity (i.e. number of nearby 93 
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ponds) thereby focusing solely on the suitability of the aquatic habitat for alpine newt. 94 

Afterwards, pond water was sampled for the measurement of pH, water transparency, 95 

electrical conductivity (EC), dissolved oxygen (DO), temperature (T), suspended solids 96 

(SS), chlorophyll a (Chla), total nitrogen (TN), total phosphorous (TP), alkalinity, 97 

hardness and ions of calcium (Ca2+), sulphate (SO4
2-) and chloride (Cl-). For assessing 98 

the fish community, the Point Abundance Sampling by electrofishing (PASE) was 99 

applied as this method is suitable for catching small juvenile fish (body size > 6 to 7 100 

mm) in standing water bodies (Garner, 1996; Perrow et al., 1996). The amount of 101 

sampling locations varied according to the pond size. Per acre, 6 to 8 anode immersions 102 

were done randomly, and fish were collected with a hand net, identified, counted and 103 

returned to the pond. The presence of amphibian species was determined through direct 104 

visual observation and capture during sweep net sampling (25 cm x 25 cm; mesh size: 105 

250 μm) in the open water areas and vegetated zones. The total sweep net sampling 106 

time varied with pond size and the time spent in each zone was adapted according to 107 

their respective percentage. Additionally, these vertebrates might have been 108 

accidentally caught whilst electrofishing. All caught amphibians were identified, 109 

counted and released back to their natural environment. 110 

The data required for the model testing (the additional 18 samples) consisted of less 111 

variables as indicated by the trained model. The presence of fish and amphibians was 112 

determined using floating fikes (50 cm x 30 cm x 25 cm) that were placed in the ponds 113 

during one night. The number of fikes depended on the pond size and varied from two 114 

to eight aiming at a catching effort of 3 to 4 fikes per are. They were equidistantly 115 

placed close to the shores. All species were identified and release back to the pond. This 116 

sampling procedure differed from the one from 2008 as the purposes of both studies 117 
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were not the same. For the present research, solely amphibian and fish occurrences were 118 

required for which both methods provided accurate information, despite their different 119 

sampling strategies. Finally, sludge depth was determined according to the procedure 120 

described in Appendix S1. 121 

Data pre-processing 122 

In order to quantitatively investigate the relationship between the occurrence of alpine 123 

newt in pond ecosystems and local pond conditions, classification tree models were 124 

built. The modelling procedure consisted of three parts (Figure 2).  As this type of 125 

black-box model is purely data-driven, its quality is highly depending on the data. We 126 

therefore checked all data for missing values, any type of error and skewed distributions 127 

prior to model development and selection (Figure 2 – Step 1). 128 

 129 

Figure 2: Overall modelling procedure for classification tree construction. Data 130 

pre-processing via correlation, outlier, missing value and stratification analyses 131 

(step 1) preceded model development (step 2) and model selection (step 3). 132 



11 | P a g e  

 

The raw data was converted into an optimized modelling dataset in three steps based 133 

on Van Echelpoel et al. (2015). We conducted a correlation analysis aiming at finding 134 

strongly correlated variables characterized by a correlation coefficient ρ of at least 0.7 135 

(Dancey & Reidy, 2004). Oxygen and temperature were excluded from the dataset as 136 

the measurements can strongly fluctuate during the day and were therefore considered 137 

not representative (e.g. Andersen et al., 2017; Whitney, 1942). In case of collinearity 138 

between variables, we decided to retain the most direct predictor variable. This decrease 139 

in dataset dimension is favourable as it results in a lower computation time and reduces 140 

model complexity. Associations among environmental variables were also investigated 141 

via a Principal Component Analysis (PCA) using R software and the vegan package. 142 

All records containing missing entries were retained during the entire modelling 143 

procedure in order to incorporate as much information as possible from the available 144 

dataset. For the PCA, missing values were beforehand statistically imputed via the 145 

expectation-maximization algorithm (EM-PCA) after which a biplot was constructed 146 

from the completed dataset. Similarly, outliers were considered to be an inherent and 147 

valuable part of the data, as argued by Orr et al. (1991). Decision trees in general are 148 

quite robust against skewed distributions due to outliers, especially models built with 149 

the C4.5 algorithm, which was used for model development in the present research 150 

(John, 1995).  151 

The classification tree model has to be able to predict both presence and absence of 152 

alpine newts with an equal accuracy. Our data however contained less presence records 153 

than absences. To achieve a balanced design, we stratified the dataset by removing 154 

absence records, thereby making the urodelan species distribution uniform. The 155 

elimination procedure was done geographically so that every region (Figure 1: A – E) 156 
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occurred in the subset. Per region, an equal number of ponds with and without alpine 157 

newts were randomly selected. This fraction was equal to the proportion of the total 158 

amount of presence records to the total absences. A major drawback of this procedure 159 

is the loss of data. The manipulation was repeated ten times and optimal classification 160 

tree models were developed for each data subset to verify the model robustness against 161 

data manipulation.  162 

Model development and selection 163 

Decision trees are suitable models when it comes to small datasets, which is the case in 164 

the present research (Everaert et al., 2011). After data pre-processing, model building 165 

(Figure 2 – Step 2) was done with the software Waikato Environment for Knowledge 166 

Analysis (Weka, version 3.8.3) for all ten stratified datasets using the J48 algorithm, 167 

which is the Java implementation of the C4.5 algorithm (Witten & Eibe, 2005). The 168 

software accounts for missing values by classifying them with weights proportional to 169 

frequencies of the observed non-missing values. As model parameterization can 170 

considerably influence the model outcome and thus the applicability towards end-users, 171 

we tested different settings related to the size and growth of the classification tree 172 

(Everaert et al., 2016). Data overfitting during model training often leads to large and 173 

complex trees at the expense of predictive power. Pruning is a means to prevent 174 

overfitting by removing knowledge rules that contribute little and thus limiting tree size 175 

(Witten & Eibe, 2005). The degree of pruning was verified via the pruning confidence 176 

factor PCF (‘confidenceFactor’ in Weka) and the minimum number of instances per 177 

leaf (‘MinNumObj’ in Weka). PCF is a post-pruning parameter as it compares model 178 

reliability of a classification tree with its subtrees after replacing branches by leaves, 179 
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thereby affecting the error estimates in each node. More specifically, increasing PCF 180 

values decreases the difference between the error estimate of a parent node and its splits. 181 

We therefore tested PCF values of 0.05, 0.10, 0.15, 0.25 and 0.35 for each of the ten 182 

datasets during model training. Pre-pruning was also applied by varying the minimum 183 

amount of instances a leaf should contain before it is split (test settings of MinNumObj: 184 

2, 5, 7, 10, 12).  185 

Regarding model validation, we applied a ten-fold cross-validation, as recommended 186 

by Han et al. (2011). Parameter testing led to the construction of 25 classification tree 187 

models per stratified set, i.e. the sum of all PCF combinations per MinNumObj element 188 

without repetition. For each array of models, we identified the most optimal parameter 189 

set by assessing the classification trees mainly on the models’ technical performance. 190 

The percentage of correctly classified instances (%CCI) and Cohen’s kappa (κ) served 191 

as criteria for testing the models’ fit. The %CCI corresponds to the percentage of ponds 192 

that were classified correctly as a pond with or without alpine newts, i.e. true positive 193 

and true negative predictions, respectively. κ accounts for all correctly predicted 194 

presences and absences adjusted to the amount of agreement expected by chance 195 

(Cohen, 1960; Hoang et al., 2010; Manel et al., 2001). Models with a CCI higher than 196 

or equal to 70% and a Cohen’s kappa exceeding 0.4 were considered to be sufficiently 197 

reliable (Goethals et al., 2007). In addition to technical criteria, model selection (Figure 198 

2 – Step 3) also depended on: (1) the complexity of the model (less complex trees are 199 

more user-friendly); (2) model robustness (being the frequency of recurrence of a 200 

specific model over all models and stratified subsets); and (3) ecological relevance. For 201 

the latter, which expert-knowledge was used to check if the observed patterns were 202 

likely from an ecological point of view. This selection assessment eventually led to the 203 
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proposal of one model that was tested with the independent data as collected in 2017. 204 

The if/then rules were implemented in Excel, after which %CCI and κ were calculated 205 

and evaluated by comparing predictions with observations via a confusion matrix.  206 
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Results 207 

Data optimization 208 

The initial dataset consisted of 41 predictor variables, of which 9 were nominal and 32 209 

were numerical (Appendix S2). The dimension of the dataset was reduced by 210 

conducting multiple correlation analyses to detect collinearity between predictor 211 

variables and by selecting the most direct variable in case of significant correlations 212 

(Appendix S3). The percentages of shade, overhanging trees and trees on the margin of 213 

the pond were found to be highly correlated. We therefore decided to only include the 214 

percentage of shade as a proxy for the light entering the pond in subsequent analyses. 215 

Similarly, we decided to retain surface area of the pond above other dimension variables 216 

(i.e. length, width, volume) due to their high mutual correlation. The average bank angle 217 

was chosen over minimum and maximum bank angle. Five records had missing values, 218 

i.e. three with unavailable data for the variables hardness, sulphate and chloride, and 219 

two other instances did not have data about fish presence. The total dataset contained 220 

information on 125 ponds of which 41 with only alpine newts with no fish, while 42 221 

were solely inhabited by fish and contained no alpine newts. The most commonly 222 

encountered fish were Pungitius pungitius (ninespine stickleback), Gasterosteus 223 

aculeatus (three-spined stickleback) and Carassius gibelio (Prussian carp), occurring 224 

in 71.1%, 26.1% and 21.7% respectively of the ponds with fish. There were only 5 225 

ponds in which both alpine newt and fish were present (Figure 3). The PCA biplot 226 

indeed shows that alpine newt presence and fish occurrence are strongly negatively 227 

associated (Appendix S4). Additionally, alpine newts seem to be positively associated 228 
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with the percentage of vegetation and dead plant material and show a negative 229 

association with variables linked to eutrophication such as sludge, TN, TP, SS and Chla.  230 

 231 

Figure 3: Venn diagram of the prevalence of fish and alpine newt in the optimized 232 

dataset containing 125 ponds (N). 233 

Model development, selection and testing 234 

All constructed models were first assessed on their technical performance, calculated 235 

via %CCI and Cohen’s κ.  An extensive overview of the results of all parameterizations 236 

and stratifications is provided in Appendix S5. There were 220 models of 250 possible 237 

combinations (88.0%) that fulfilled the requirements of a %CCI and Cohen’s κ of at 238 

least 70% and 0.40 respectively. A total of 42 different classification trees could be 239 

distinguished. The model that returned most frequently, i.e. in 32.3% of all cases, was 240 

also amongst the most simple of models (maximum of two nodes) and robust as it 241 

recurred in 6 out of 10 stratified datasets. The key factors in this model were the 242 

dichotomous variable fish occurrence (absence/presence) followed by sludge thickness 243 

split at 15 cm (Figure 4). If fish are present in a pond ecosystem, alpine newts are 244 

predicted absent by the model, and in fishless ponds the species tend to be absent when 245 
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the sludge layer is > 15 cm thick. The second most common model, i.e. in 14.1% of all 246 

reliable models, was the same as the one described in Figure 4, apart from the threshold 247 

value for sludge thickness, which was set at 22 cm. Furthermore, in 9.6% of all reliable 248 

models, water transparency, measured via sneller depth (root node), and fish (internal 249 

node) determined habitat suitability. A pond characterised by a sneller depth smaller 250 

than or equal to 10 cm, is predicted to contain no alpine newts. In less turbid ponds (i.e. 251 

sneller > 10 cm), alpine newts are likely to be absent in case the pond is inhabited by 252 

fish. Both models were present in 3 and 4 out of 10 stratifications, respectively. Due to 253 

this lower model robustness, we deemed the model in Figure 4 to be a more accurate 254 

representation of alpine newt occurrence in ponds in our data. All other reliable models 255 

occurred rather sporadically (< 4.6%), were less robust as they were all the result from 256 

a specific subset, and were more complex consisting of 3 to 6 nodes. Note that the most 257 

simple models occurred at higher levels of pre-pruning, while more complex and lower 258 

performing models on average could be linked to less pre-pruning. 259 

 260 

Figure 4: Most consistently returning model of all reliable classification trees 261 

(%CCI ≥ 70% and κ ≥ 0.40). Fish presence results in absence of alpine newts, while 262 

in fishless ponds sludge depth is considered to be the most decisive factor. 263 

A=absent; P=present.  264 
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The obtained model described in Figure 4 was tested with independent newly collected 265 

field data. Alpine newts were present in 8 out of 18 sampled ponds and we found two 266 

fish species in 5 of the ponds, namely Pungitius pungitius and Gasterosteus aculeatus. 267 

Sludge depth varied from 1 cm to 42 cm with an average of 10.9 cm and a standard 268 

deviation of 12.2 cm. The model was able to correctly classify 72.2% of all cases and 269 

combined with a κ statistic of 0.46 this indicated a satisfactory model performance in 270 

an ecological context (Goethals et al., 2007).  271 
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Discussion 272 

Model relevance 273 

The alpine newt is a urodelan species which is generally believed to have only few 274 

specific habitat requirements (van Delft, 2009). This idea is supported by the relatively 275 

simple structure of the best performing model from the present study (Figure 4), which 276 

only contains fish presence/absence and sludge thickness as major steering variables 277 

determining the presence/absence of alpine newts. This classification tree is user-278 

friendly, due to its simplicity and reliability (κ > 40% for test data). We thus propose 279 

that the model can be used for management purposes.  280 

The proposed model indicates a lack of co-occurrence between alpine newts and fish. 281 

Indeed, fish compete for the same resources and/or directly predate on the amphibian 282 

community in the same habitat (Winandy et al., 2015). For example, Pearson & Goater 283 

(2009) observed an almost complete extinction of Ambystoma macrodactylum larvae 284 

(long-toed salamander) and a 39% reduction in salamander survival in the presence of 285 

the predatory fish Oncorhynchus mykiss (rainbow trout). In another example, the non-286 

piscivorous Pimephales promelas (fathead minnows) outcompeted the urodele for 287 

zooplankton as a food resource. Several other authors have reported similar outcomes 288 

on the effect of fish presence on newt communities (e.g. Cabrera-Guzmán et al., 2017; 289 

Monello & Wright, 2001; Pagnucco et al., 2011). The most commonly encountered 290 

fishes in the assessed ponds of the present study were sticklebacks that can predate on 291 

newt egg masses and larvae. They are also strong competitors as they feed on similar 292 

resources, such as zooplankton and macroinvertebrates (Jakubavičiūtė et al., 2017). 293 

Fish presence can also induce behavioural changes in newts and have non-consumptive 294 
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effects. For example, Winandy & Denoël (2013) reported that alpine newts use shelters 295 

(micro-habitats) more frequently and significantly reduce their sexual activity in the 296 

presence of Carassius auratus (goldfish). Multiple non-predatory fish can have 297 

detrimental impacts on aquatic vegetation and can increase water turbidity, thereby 298 

impeding foraging and signalling efficiency during mating (Richardson et al., 1995; 299 

Secondi et al., 2007). Furthermore, fish have a substantial negative effect on newt 300 

paedomorphs, i.e. a non-metamorphosized alternative adult phenotype with larval traits 301 

such as gills (Denoël et al., 2005). This uncompleted form of transformation is common 302 

amongst alpine newts, smooth newts and palmate newts, making them even more 303 

susceptible to fish co-occurrence (Denoël et al., 2009).  304 

In fishless ponds, our data suggest that sludge thickness determines alpine newt 305 

occurrence. The amount of sludge is not necessarily a causal factor, as it can be linked 306 

to several processes. Firstly, sludge thickening occurs during the natural succession of 307 

pond ecosystems. Unmanaged shallow ponds will gradually fill up, through sediment 308 

influx from streams or rivulets after heavy rains, thereby reducing pond depth and 309 

allowing vegetation to gradually colonize the entire ecosystem (Chauchan, 2008). Our 310 

PCA results (Appendix S4), however, show that alpine newt presence is positively 311 

correlated with the percentage of vegetation cover, making it rather unlikely that natural 312 

succession always decreases pond habitat suitability. Indeed, this urodelan species 313 

commonly occurs in vegetated pools where they fold eggs in leaves to protect them 314 

from predation (van Delft, 2009). In our dataset, sludge is strongly associated with 315 

levels of total nitrogen, total phosphorous, chlorophyll a and suspended solids. This 316 

suggests that the degree of eutrophication, translated via sludge thickness in the model, 317 

is likely to have a major influence on the occurrence of alpine newts. Eutrophication 318 
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leads to algae-dominated systems with sparse submerged vegetation. The lack of 319 

submerged vegetation reduces the amount of suitable egg depositing habitats, while 320 

high turbidity affects the feeding and mating behaviour of newts (Secondi et al., 2007).  321 

Implications for management  322 

Regarding management practices for alpine newt conservation in an agricultural 323 

landscape, our results suggest that  ponds which from time to time fall dry might be 324 

highly suitable habitats. Recurrent dry-stands not only ensure fish absence, but also 325 

reduce eutrophication. Ponds that periodically dry out have less sludge accumulation 326 

due to organic oxidation during the dry phase. It is advisable that such ponds dry out 327 

earliest in late summer, by which time offspring of alpine newts have left the pond 328 

(Hermy & De Blust, 1997). Larval growth rate can, however, vary depending on a 329 

pond’s hydroperiod due to developmental plasticity (Griffiths, 1997). Temporary ponds 330 

often contain unique biological communities resulting in a high pond conservation 331 

value (Biggs et al., 1994; Collinson et al., 1995). In addition to regular dry-stands, 332 

buffer strips consisting of e.g. reed, soft rush and water plantain should be encouraged 333 

as a protective measure against nutrient input from surrounding land, especially in case 334 

of cattle drinking ponds. This can also reduce the negative impact of agricultural 335 

contaminants, such as pesticide residues and heavy metals (Hermy & De Blust, 1997). 336 

Patches of dense, high grass can be added to the buffer zone so that adult newts can 337 

forage and find shelter. The herb layer then preferably gradually evolves to shrubs and 338 

forest as these elements provide excellent hibernation and shelter places, such as 339 

mouldered branches and trunks (Hermy & De Blust, 1997). 340 
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Sludge accumulation can also be countered by dredging and vegetation removal, mainly 341 

to control natural succession and to preserve the aquatic ecosystem. However, it is 342 

inadvisable that all ponds in a landscape be dredged simultaneously because this could 343 

lead to a significant decrease in habitat hence reduced aquatic gamma diversity (Biggs 344 

et al., 1994; Hassall, 2014). Teurlincx et al. (2018), for example, promote successional 345 

stage heterogeneity via the Cyclic Rejuvenation through Management (CRM) 346 

approach, where aquatic water bodies are periodically and asynchronously reset.  347 

Related to this, managers should invest in connecting ecologically diverse ponds to 348 

maximize landscape-wide biodiversity (Biggs et al., 2000). Connectivity of different 349 

ponds plays a major role in maintaining a healthy gene flow amongst amphibian 350 

metapopulations (Stevens et al., 2006). Functional connectivity, related to the newt 351 

dispersal capabilities and colonization of ponds, is even more crucial as it is the actual 352 

connectivity from the perspective of the animal. As newts have a dispersal capacity of 353 

around 400 meters, ponds should be closer to each other than for the common toad, 354 

which migrates in a radius of 2 200 meters (Hermy & De Blust, 1997). Ecological 355 

corridors play an essential role in pond connectivity. For the alpine newt, Emaresi et al. 356 

(2011) identified forests to be major corridors, while urban areas act as significant 357 

dispersal barriers.   358 
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Conclusions 359 

The present research provides a reliable and user-friendly classification tree model as a 360 

management tool to assess the habitat suitability of farmland ponds for alpine newts. 361 

The major steering variables within local habitats are the presence of fish and the 362 

thickness of the sludge layer. Ponds without fish provide suitable habitat for alpine 363 

newts, while the species also prefers a sludge thickness less or equal to 15 cm. As the 364 

latter is often linked to the degree of eutrophication, we advise decision makers to create 365 

ponds that dry out annually to reduce the impact of eutrophication and to eliminate fish. 366 

In addition, construction of a buffer zone around ponds further limits the nutrient input 367 

from land to the aquatic ecosystem, especially in agricultural areas where fertilization 368 

is widely applied.  369 
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