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A B S T R A C T

Remote sensing of Land Surface Temperature (LST) generally requires atmospheric parameters and the emis-
sivity ( ) of the target to be estimated. The atmospheric up- and downwelling radiances and transmittance can be
accurately modelled using radiative transfer models and profiles of relative humidity and temperature, either
measured by radiosonde probes or retrieved from assimilating weather models. The estimation of is a large
source of uncertainty in the resulting LST product, and there are various approaches using multi-angle ob-
servations, multispectral optical or multispectral thermal infrared imagery. In this paper, the estimation of LST
from the Thermal InfraRed Sensor (TIRS) on board Landsat 8 is evaluated using more than 6 years of in situ
temperature measurements from a network of 14 Autonomous Weather Stations (AWS) in Belgium. is esti-
mated from concomitant atmospherically corrected imagery from the Operational Land Imager (OLI) using two
new neural network approaches trained on ECOSTRESS spectra, and an established NDVI based method. Results
are compared to using = 1 and the ASTER Global Emissivity Dataset. LST retrievals from L8/TIRS perform well
for all emissivity data sources for> 500 matchups with AWS subsoil temperature measurements: Mean
Differences 0.8–3.7 K and unbiased Root Mean Squared Differences of 2.9–3.5 K for both B10 and B11. The use
of unity emissivity gives the best results in terms of MD (0.8 K) and unb-RMSD (3 K). Similar ranges of unb-
RMSD are found for> 500 matchups with broadband radiometer temperatures (2.6–3.1 K), that have lower
absolute MD values (−2.2–0.6 K). For the radiometer temperatures, both the neural net approaches gave lowest
MD, in the best case ±0.1 K. The present investigation can hence recommend the neural nets to derive for the
retrieval of LST over the AWS in Belgium. Using published matchup results from other authors however, no
single source of data performed better than = 1, but this could be due to their low number of matchups.
Further efforts for estimating representative pixel average emissivities are needed, and establishing a denser in
situ measurement network over varied land use, with rather homogeneous land cover within a TIRS pixel, may
aid further validation of a per pixel and per scene estimates from multispectral imagery. AWS data seems
valuable for evaluation of satellite LST, with the advantage of a much lower cost and higher potential matchup
density compared to conventional radiometers.

1. Introduction

Satellite observations in the thermal infrared (TIR) part of the
spectrum, with typical wavelengths in the atmospheric windows be-
tween 3–5 and 8–15 µm are used to retrieve surface temperatures (ST)
for land (LST) and water (WST) targets (Wan et al., 2004; Wan, 2014;
Sekertekin and Bonafoni, 2020; Vanhellemont, 2020). As surface tem-
perature drives heat exchange between the surface and the atmosphere
the remote estimation of LST can be a very powerful tool in under-
standing climate and ecological processes. In the aquatic environment,
WST can be an important driver of nutrient mixing and can structure
phytoplankton communities (Wiltshire et al., 2008; Trombetta et al.,

2019). Water temperature in lakes and reservoirs may be a driver for
the occurrence of harmful algal blooms and WST could be used in
predictive models (Schaeffer et al., 2018; Wynne et al., 2013). In ter-
restrial applications, soil moisture and evapotranspiration for example
can be inferred from satellite estimated LST (Sandholt et al., 2002;
Anderson et al., 2012), and the remotely sensed LST could hence be
crucial for synoptic monitoring of drought conditions (Karnieli et al.,
2010; Wan et al., 2004) and crop health (Anderson and Kustas, 2008;
Sholihah et al., 2016). Thermal imagery from MODIS is routinely used
for active fire detection (Justice et al., 2002; Giglio et al., 2003), and
higher resolution data e.g. from Landsat has been used for the mon-
itoring of underground coal fires (Mansor et al., 1994; Kuenzer et al.,
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2007) and geothermal activity (Lagios et al., 2007; Mia et al., 2014; Mia
et al., 2017; Chan et al., 2018). High resolution satellite derived LST can
also be used to study the effects of urban heat islands (Li et al., 2011;
Liu and Zhang, 2011) and heatwave risks (Dousset et al., 2011; Buscail
et al., 2012).

The TIR radiance observed by satellite sensors is a function of at-
mospheric and surface (emissivity and kinetic temperature) properties.
Parameters needed for the atmospheric correction of top-of-atmosphere
TIR (atmospheric transmittance, , downward and upward atmospheric
radiances, Ld and Lu) can be reliably estimated using radiative transfer
simulations and atmospheric profiles of relative humidity and tempera-
ture, either from radiosondes or assimilated weather models (Barsi et al.,
2005; Pérez-Planells et al., 2015; Vanhellemont, 2020). Alternative
methods using a split window approach (Caselles et al., 1998; Wan,
2014) require multiple TIR bands and knowledge of the water vapour
content of the atmosphere. To retrieve the surface temperature, the
emissivity needs to be estimated, either simultaneously or from external
data sources. The emissivity of a surface is defined as the ratio of the
radiance emitted by a surface to the radiance emitted by a black body at
the same temperature. The accurate estimation of emissivity is essential,
as a 1% error on the emissivity can lead to errors up to 1 K in the derived
LST product (e.g. Wan (2014, 2017)). Typically, emissivity is modeled
using an image classification method (Snyder et al., 1998), the Nor-
malised Difference Vegetation Index (NDVI) and/or fraction of vegeta-
tion cover (FVC) if concurrent multispectral optical imagery is available
(Sobrino and Raissouni, 2000; Chen et al., 2016; Sekertekin, 2019; Ren
et al., 2017) or imposed from external data sources, such as the MODIS
(Wan et al., 2004) or ASTER (Hulley et al., 2015) emissivity products. A
review and sensitivity analysis of different methods of emissivity esti-
mation from NDVI is given in recent publications (Gao et al., 2020;
Sekertekin and Bonafoni, 2020). MODIS and ASTER have multispectral
TIR instruments that can be used to retrieve emissivity using the Tem-
perature Emissivity Separation (TES, Gillespie et al., 1998) or Tem-
perature Independent Spectral Indices of Emissivity (TISIE, Li and
Becker, 1993) approaches. A review of TES and TISIE methods is given in
Li et al. (2013), but are not discussed further due to the focus on Landsat
type instruments in the present paper. There can be significant aniso-
tropy of the emissivity especially for viewing angles>30° (Ren et al.,
2011; Li et al., 2013; García-Santos et al., 2015), which can be ignored
for largely nadir-viewing instruments such as those on Landsat.

Water targets are generally used for calibration and validation of
atmospheric correction methods and surface temperature retrieval, due
to the constant emissivity of liquid water and the generally low spatial
heterogeneity of temperature within a satellite pixel (e.g. Barsi et al.
(2005)). For water targets, the high resolution thermal imagers on the
Landsat series of satellites have generally a better than 1 K Root Mean
Squared Difference (RMSD) compared to in situ temperature measure-
ments (Cook et al., 2014; Malakar et al., 2018; Vanhellemont, 2020).

Land pixels generally aggregate information for a large variation of
heterogeneous materials (buildings, trees, roads, fields, water). Because
the content of a TIR satellite pixel is heterogeneous, the emissivity for a
given pixel is an aggregation of the different pixel contents and geometry
(Yang et al., 2015), and it may be a challenge to establish an appropriate
pixel specific emissivity. Furthermore, land targets are typically much
more variable in space and time due to seasonal effects (growth, snow
cover, flooding), land use variability (ploughing, crop growth and har-
vesting), and the emissivity of soils can increase based on moisture
content, leading to up to 2 K errors on LST estimates (Mira et al., 2007;
García-Santos et al., 2013). As a result of these effects, validation over
land sites typically gives larger RMSD compared to in situ measurements
compared to water sites, ranging from 2–4 K for Landsat type sensors
(García-Santos et al., 2018; Sekertekin, 2019). In a comprehensive vali-
dation exercise of LST derived from multiple coarser resolution sensors
(AATSR, GOES, MODIS, and SEVIRI), Martin et al. (2019) found daytime
accuracy within 4 K, and nighttime accuracy within 2 K.

This paper presents an alternative emissivity estimation from mul-
tispectral imagery, using a machine learning approach (neural network)
and a spectral library. The method is demonstrated using Landsat 8 (L8)
which has on board a 9 band visible to shortwave infrared imager, OLI,
and a two band thermal infrared sensor, TIRS. Atmospherically cor-
rected OLI imagery acquired at the same time as the TIRS imagery is
used in combination with the neural network to estimate emissivity in
both TIRS bands. Emissivity estimates are compared to other emissivity
sources, i.e. the ASTER GDEM dataset and an NDVI based approach,
and are used to retrieve single band LST from both Bands 10 and 11 in
the L8 ”Collection 1” Level 1 data using the TIR atmospheric correction
method presented in Vanhellemont (2020). Split channel algorithms
were not used due to the poor performance found for the coefficients
provided by Du et al. (2015) as used by Gerace and Montanaro (2017)
after their stray light correction (Vanhellemont, 2020). LST for all
emissivity sources are compared to in situ subsoil temperature mea-
surements at 14 sites operated by the Royal Meteorological Institute of
Belgium (RMI), and to temperatures derived from broadband radio-
meters at 12 of the 14 sites. The use of these regular weather mon-
itoring sites, which can provide many more matchups, as well as
matchups from radiometers presented by previous studies are evaluated
for satellite validation. The varied locations of the different sites
(Bertrand et al., 2013) may be differently impacted by seasonal varia-
bility in the emissivity estimations.

2. Data and methods

2.1. In situ data

In situ temperature measurements were obtained from 14 AWS
operated by the RMI across Belgium (Table 1 and Fig. 1). This dataset

Table 1
Locations of the 14 AWS sites and measured parameters.

Number Name Latitude (°N) Longitude (°E) T°C Air T°C Soil T°C Soil-5 cm T°C Grass T°C Rad

1 BEITEM 50.9050 3.1231 Y Y Y Y Y
2 ZEEBRUGGE 51.3486 3.1956 Y N N N N
3 ZELZATE 51.1814 3.8053 N Y N N N
4 MELLE 50.9808 3.8175 Y Y Y Y Y
5 STABROEK 51.3256 4.3650 Y Y Y Y Y
6 ST-KATELIJNE-WAVER 51.0675 4.5306 Y Y Y Y Y
7 UCCLE-UKKEL 50.7986 4.3581 Y Y Y Y Y
8 DOURBES 50.0964 4.5947 Y Y Y Y Y
9 ERNAGE 50.5828 4.6908 Y Y Y Y Y
10 RETIE 51.2222 5.0283 Y Y Y Y Y
11 HUMAIN 50.1947 5.2567 Y Y Y Y Y
12 DIEPENBEEK 50.9164 5.4517 Y Y Y Y Y
13 BUZENOL 49.6211 5.5886 Y Y Y Y Y
14 MONT RIGI 50.5117 6.0747 Y Y Y N Y
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covers the full Landsat 8 mission and includes hourly measurements of
air temperature at 1.5 m above the surface, and ground temperatures
(1) above grass, (2) above bare soil, and (3) 5 cm below bare soil.
Details on the automated quality control of the air and soil tempera-
tures can be found in Bertrand et al. (2013, 2015). Temperatures are
measured with a PT100 probe, which has an accuracy of < 0.1 K or
< 0.1% of span, and the total accuracy of the system is estimated to be
0.3 K. 12 out of the 14 sites used here also have a Campbell Scientific
CNR-1 broadband (0.3–3 µm and 5–50 µm) Net Radiometer with up-
and downward facing instruments installed. The irradiance measure-
ment from the downward facing thermal instrument (E, W/m2) can be
used to compute the ground surface temperature, T (K), according to
the Stefan–Boltzmann law:

=E T· 4 (1)

with the Stefan–Boltzmann constant, taken here as 5.67·10 8 W/m K2 4.
Temporal coverage of the individual measurements vary per site,

and the closest bounding temperature measurements within one hour of
the satellite overpass were linearly interpolated to the overpass time.
Soil and air temperatures are measured using contact probes, and those
in situ temperature measurements are perhaps not directly comparable
to satellite-measured skin temperature, and a better performance is
expected for the broadband radiometer-derived temperatures. From the
contact thermometer data, the measurements below bare soil are likely
most comparable to the satellite measured skin temperature, if the soil
is not frozen (Jin and Mullens, 2014), as they are less sensitive to small
scale air fluctuations and direct insolation. The air temperature usually
differs from the skin temperature due to surface and atmospheric con-
ditions (Jin et al., 1997), and generally a lag is observed between skin
temperatures and soil and air temperatures (Jin and Mullens, 2014).
The air, grass and soil temperatures are quite sensitive to direct solar
heating and are hence not used here. The presence of buildings and
trees, and their cast shadows, in the satellite pixel may cause significant
differences between the AWS temperatures and satellite measured skin
temperatures, as the 120 × 120 m TIRS pixel may not be homogeneous
around the site. The landscape in Belgium is very fragmented as a result
of its long history and (lax) spatial planning policies (Albrechts et al.,
2003), which results in a changing of emissivity at short spatial scales,
and likely significant sub-pixel variability, and complex thermal ad-
jacency effects. This provides a challenge for the validation of satellite
imagery, but the present investigation may provide performance in-
dicators in the typical use of satellite LST in such a fragmented land-
scape, even though the AWS are installed on long-term stable meteor-
ological observation sites. The dense time series in time and space
provides excellent opportunities for large scale matchup analysis, and

can give an indication whether these types of measurements can be
used for evaluation of satellite derived LST. For water applications for
example, bulk temperatures are often used for validation, and corrected
with a simple offset to obtain equivalent skin temperatures (Donlon
et al., 2002; Cook et al., 2014). Furthermore, the installation and
maintenance of radiometer systems is more expensive than these AWS
or automated contact thermometers, and many national institutes al-
ready have an established network of soil and subsoil temperature and
irradiance measurements. The use of these AWS is here suggested as
addition to, and not a replacement for, validation sites with high per-
formance thermal radiometers such as those in SURFRAD.

2.2. Satellite data

The available ”Collection 1” daytime data combining both sensors
on Landsat 8, OLI and TIRS, were obtained from Google Earth Engine
(GEE, Gorelick et al., 2017). Imagery was provided in standard USGS
L1T format, i.e. terrain corrected Top-of-Atmosphere (TOA) radiances/
reflectances in GeoTiFF format as produced from the Landsat Product
Generation System (LPGS) version 2.7.0 (imagery before October
2017), 13.0.0 (October 2017 - April 2018), and 13.1.0 (imagery after
April 2018). OLI is a push broom imager with 9 spectral bands (B1–9) in
the visible to near-infrared part of the spectrum, with 8 bands at 30 m
and 1 panchromatic band at 15 m spatial resolution. TIRS is a two band
push broom imager with bands B10 and B11 centred on 10.9
(10.6–11.2) and 12.0 (11.5–12.5) µm, and records data at 100 m spatial
resolution. TIRS data is resampled to 30 m and collocated on the OLI
grid. OLI data from the 30 m bands excluding the cirrus band at 1.37
µm were atmospherically corrected using the Dark Spectrum Fitting
Atmospheric Correction (DSF, Vanhellemont and Ruddick, 2018;
Vanhellemont, 2019) using a fixed path reflectance for a 12 by 12 km
Region Of Interest (ROI) centred on the measurement sites. Only scenes
with> 75% ROI coverage were retained, i.e. removing edge-of-swath
scenes where the station is not in the scene. Quality control was per-
formed separately for the computation of the ROI mean and median
reflectance datasets and the matchups. Mean and median reflectance
datasets (e.g. Fig. 2) were computed per ROI based on quasi cloud-free
images, where a simple cloud filtering was performed using thresholds
on the blue and cirrus bands: scenes with>10% of the ROI with t
1373 nm > 0.015 or s 443 nm > 0.15 were removed. Data filtering
for the matchups was performed using an additional quality filtering;
matchups were excluded when the mean of a 11 × 11 pixel box centred
on the station had t 1373 nm > 0.01 (to exclude cirrus contamina-
tion), a maximum visible band (443, 483, 561, 655 nm) s >0.12 (to
exclude direct cloud cover over the site), and the subscene interquartile
range of s 443 nm > 0.035 (to exclude scenes with scattered clouds).

TOA thermal radiances (Lt) were also extracted for TIRS B10 and
B11. Parameters required for the atmospheric correction of the thermal
channels were derived using the method presented in Vanhellemont
(2020). Subscene center ERA5 reanalysis profiles from the 0.25x0.25
degree data provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF, Malardel et al., 2016) and the libRadtran
(version 2.0.2) radiative transfer code (Mayer and Kylling, 2005; Emde
et al., 2016) were used to compute the atmospheric transmittance ( ),
and up- (Lu) and downwelling (Ld) radiances. The TOA thermal ra-
diance is a measurement of the combined surface-emitted radiance (Ls)
and atmosphere:

= + +L L L L·( · (1 )· ) ,t s d u (2)

and in order to derive land surface temperature, the emissivity ( ) per
pixel needs to be estimated, which is detailed in the next section.

2.3. Emissivity data

Emissivity was estimated from OLI surface reflectances ( s) using a
neural network approach. Reference spectra were obtained from the

Fig. 1. Locations of the 14 AWS stations operated by RMI in Belgium. The boxes
show the approximately 12 × 12 km ROI around the station used in satellite
image processing. Station names and coordinates are given in Table 1.
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ECOSTRESS spectral library (Baldridge et al., 2009; Meerdink et al.,
2019). 1072 out of the 3403 ECOSTRESS spectra with complete spectral
coverage from the visible to thermal infrared (wavelengths 0.3–15 µm)
were resampled to the OLI and TIRS relative spectral response func-
tions. A subset of 839 spectra (Fig. 3) from the ”manmade”, ”rock”,
”soil”, ”vegetation”, and ”water” classes (excluding ”meteorites”,
”nonphotosyntheticvegetation”, and ”mineral”) were finally retained to
train a neural network (Net1) using the Keras (Chollet, 2015) library
and TensorFlow (Abadi et al., 2015) backend. A second network (Net2)
was trained using a subset of 561 spectra, also excluding the ”rock”
class. The input reflectance spectra were normalised using the spectral
mean and standard deviation in each OLI band. The neural network has
n input neurons, for the s in the VNIR-SWIR OLI bands, and output
neurons, for the in both TIRS bands. Input neurons either included
(n = 8) or excluded (n = 7) the panchromatic channel on OLI, band 9
(cirrus at 1.37 µm) was excluded due to the low atmospheric trans-
mittance. The mean squared error loss function and adam optimiser
were used for the output neurons. Various combinations of deep (4–8)
and wide (16–256) hidden layers were tested. 1000 training epochs
with a batch size of 20 were ran per set up, with datasets randomly split
in 90% training and 10% validation data in each epoch.

For each ROI, emissivity was estimated using the selected neural
networks from the OLI s imagery on a scene by scene basis, as well as
for the cloud filtered per-pixel median s over the mission lifetime.
Pixels with s 1609 nm < 0.02 are considered to be water, and their
emissivity is fixed to band averaged values from Vanhellemont (2020),
0.9926 and 0.9877 for B10 and B11 respectively. The scene specific

estimates are included in order to accommodate for seasonal (e.g. snow,
droughts) or rapid (e.g. crop harvest, ploughing, flooding) changes
where an average dataset may be insufficient. The mission lifetime
median dataset is likely biased to clear weather (i.e. summer) condi-
tions. In Fig. 2 the differences between the median and scene specific
coverage for BUZENOL are illustrated. There are marked differences in
field state, where in the scene specific RGB composites many more
fields have been recently ploughed and are hence bare soil. The forest
appears darker in the median composite than in the spring image, due
to the bias to summer condition due to cloud coverage. The differences
between pine and deciduous stands are more pronounced in the spring
and median images than in the summer image. Fields appear to be more
yellow or brown in the summer image than in the spring image, which
could indicate changes in soil water conditions. Emissivity data for each
ROI were also obtained from the ASTER Global Emissivity Dataset 100-
meter V003 (AG100, Hulley et al., 2015), resampled to the OLI 30 m
grid using cubic interpolation. The simplified Normalised Difference
Vegetation Index (NDVI) approach (Sobrino and Raissouni, 2000;
Sobrino et al., 2008; Jiménez-Muñoz et al., 2008) was also used to
estimate emissivity:

= +FVC FVC·(1 ) ·s v (3)

with s the average soil emissivity (0.971 and 0.977 in B10 and B11)
and v the average vegetation emissivity (0.987 and 0.989 in B10 and
B11) taken from Skoković et al. (2014). FVC is the Fraction of Vege-
tation Cover (Carlson and Ripley, 1997):

Fig. 2. L8/OLI s RGB composites for the BUZENOL ROI (site 13), cloud-free mission median (left) and images for 2014–05-05 (middle) and 2018–08-04 (right). All
three images have the s R (655 nm), G (561 nm) and B (483 nm) linearly scaled from 0–0.15 to the 8 bit RGB channels. Scene dimensions are approximately 12 by
12 km. The left plot shows the locations of the emissivity time-series in Fig. 8, (1) Field, (2) Pine, (3) Pine cut in 2018.

Fig. 3. The 839 spectra from the ECOSTRESS library resampled to OLI bands coloured by class, without (left) and with (right) normalisation. Note that the water
class contains both liquid (highly absorbing) and solid (highly reflective) water. Band 8 is the panchromatic band (centre wavelength 592 nm). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)
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=FVC NDVI NDVI
NDVI NDVI

.min

max min

2

(4)

where NDVImin and NDVImax give the NDVI ranges used between bare
soil (< 0.18) and fully vegetated (> 0.85), and NDVI is computed from
OLI red (655 nm) and NIR (865 nm) surface reflectances:

=
+

NDVI .NIR red

NIR red (5)

FVC is set to 0 for NDVI< NDVImin and to 1 for NDVI> NDVImax. For
FVC = 0 the is estimated separately for B10 and B11 according to
Skoković et al. (2014):

=B( 10) 0.979 0.046· ,red (6)

and

=B( 11) 0.982 0.027· .red (7)

Finally, temperatures were also computed using unity emissivity.

2.4. Statistics

Linear correlation statistics and Reduced Major Regression (RMA)
lines were computed for the matchups, and the Root Mean Squared
Difference (RMSD), Mean Difference (MD), and unbiased RMSD (unb-
RMSD) are given as indication of the total error, systematic error (bias),
and precision:

=
=

RMSD
y x

n
( )

,
i

n
i i

0

2

(8)

=
=

MD
y x

n
,

i

n
i i

0 (9)

=unb RMSD RMSD MD .2 2 (10)

3. Results and discussion

3.1. Emissivity estimates

The hidden layer construction of the neural network was varied
between widths of 16, 32, 64, 128, and 256 neurons, and depths of 4, 5,
6, 7 and 8 layers. The performance of the neural net was evaluated
against the expected reflectance from the ECOSTRESS library, with the
64 × 4 net giving highest r2 (87% and 86%) and lowest RMSD (1.19
and 1.02) in both TIRS bands for the first subset of spectra (Fig. 4). The
second subset of ECOSTRESS spectra (excluding the ”rock” spectra)
gave similar performances (r2 82%, RMSD 1.12–1.13, Fig. 5). The in-
clusion of the panchromatic band only marginally changed the model
performance using the ECOSTRESS library, and hence was excluded
from the application to satellite imagery due to the larger uncertainty
on the atmospheric correction of the panchromatic band.

The emissivity estimated from the median ROI s compares well to
the emissivity from the ASTER GED (an example for BUZENOL is shown
in Fig. 6). Although a larger spread is found for the OLI derived emis-
sivity (e.g. Fig. 7) compared to the ASTER GED, the Mean Average
Relative Differences (MARD) are about 1.3–2.6% in B10 and 0.8–2.0%
in B11 for Net1 and 0.8–2.2% in B10 and 0.6–1.8% in B11 for Net2,
with slight variability between sites. Thanks to the higher OLI resolu-
tion (30 m) compared to the ASTER GED (100 m), individual fields or
tree stands, and manmade materials may be better resolved spatially.
The OLI data range is more recent (2013–2019) than the one used for
the ASTER GED (2000–2008), a decade during which land use has
changed significantly. There are some differences between the ASTER
and TIRS spectral responses that are not taken into account. The OLI
derived emissivity is generally a bit lower than the ASTER GED data
(maximal MD −0.024 in B10 and −0.013 in B11 for Net1), likely as a

direct result of the spectral response differences and the neural network
performance. Compared to the ASTER GED dataset, the different nets
performed differently across the sites, depending on the ROI scene
contents. Generally the second net gave lower differences with the
ASTER GED compared to the first net, except for regions with large
forest coverage (e.g. BUZENOL). The lower emissivity estimated from
the neural nets will lead to higher LST estimates compared to using
unity or ASTER emissivity.

A time-series of B10 emissivity for several pixels in the BUZENOL
site is shown in Fig. 8. The median emissivities from both nets are si-
milar to those from the ASTER GED, with Net2 giving emissivities about
0.01 lower than ASTER. The two pine stand pixels show a slight
variability of emissivity through the year, with highest values reached
during spring and early summer. The second pine stand was cut down
in 2018, and the emissivity drops closer to values associated with bare
soils or barren terrain. Net1 gives much lower emissivity for the barren
pixels, likely since it confuses bare soil with the rock spectra (with
generally lower, or more variable emissivity) also included in the
model. The NDVI based model generally fluctuates between the im-
posed soil (0.971) and vegetation (0.987) emissivities, and also clearly
shows the bare soil period for the second pine stand. A larger standard
deviation in the 3 × 3 pixel boxes are found for the neural nets, likely
due to the fixed emissivity range of the NDVI method, and the coarser
resolution of the ASTER GED. For the Field pixel larger variability is
found, cycling between tilled and planted fields. The NDVI and Neural
Net methods give different results for separate tilling operations: going
from crop to tilled in April 2015 decreases the NDVI but increases the
estimate from both Nets, while the tilling operation in April 2017 has
the NDVI going from low to high, and the nets (esp. Net2) give the
inverse pattern.

3.2. Surface temperature

Surface temperatures are computed using the simulated up- and
down-welling radiance and transmittance of the atmosphere, and six
estimates of emissivity: (1) unity, = 1, (2) ASTER GDEM, (3) per-
scene OLI NDVI derived, and (4–7) per scene and ROI-average OLI
derived from both neural nets. An example of an LST product for
BUZENOL site is shown in Fig. 9. When using unity and ASTER GED
emissivity, lower temperatures are found compared to the OLI derived
emissivity, which is caused by the OLI products having an overall lower
emissivity. The higher resolution of the OLI product compared to
ASTER GED or the TIRS native resolution gives a sharper derived
temperature product.

Matchups with the AWS data from 12 and 14 sites operated by the
RMI were identified, and quality controlled using the OLI reflectance
data. The number of potential matchups was decreased from 1972/
1848 (scenes with bounding in situ measurements) to 537/501 (scenes
passing automated quality control) for the radiometer and subsoil in
situ measurements. A summary of the performance is given in Table 2
and 3, with scatter plots in Fig. 10 and 11. A strong linear relationship is
found between satellite and in situ measurements, with high correlation
coefficients (r2 0.90–0.95), and near unity slope (0.94–1.04).

For the broadband radiometer derived temperatures, the RMSD are
quite close between all the datasets (2.8–3.5 K), with a cold bias (ne-
gative MD) for unity, ASTER and NVDI emissivity (-0.9 to −2.2 K).
Net1 and Net2 give the lowest absolute MD, with Net1 biased 0.6 K
warm for B10 and ± 0.1 K for B11. For Net2 the MD is ± 0.1 K for B10
and −0.4 K for B11. The RMSD and MD are directly related to the range
in the emissivity dataset used, as the emissivity is the only change be-
tween the comparisons. For these matchups, the MD seems to be the
distinguishing statistic, as the performance for other statistics is very
similar. The unb-RMSD can be slightly higher for the Nets than for the
other datasets, due to the spatial variability inherent in the OLI data,
and the larger range of emissivities from the Net outputs. Both nets give
different emissivity estimates in both bands, and it seems like Net1
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gives a better B11 estimate than Net2 (MD ± 0.1 K compared to
−0.4 K), and Net2 gives a better B11 estimate than Net1 (MD ± 0.1 K
compared to 0.6 K).

For the subsoil temperature, the RMSD across all emissivity datasets
is quite large (3–5 K). The MD (0.8–3.7 K) and hence difference be-
tween unb-RMSD and RMSD (generally 0.1–1.5 K) are also larger for
the subsoil temperatures than for the radiometers. In terms of scatter,
overall performances are quite similar for the radiometer (unb-RMSD
2.6–3.1 K) and subsoil (unb-RMSD 2.9–3.5 K) temperatures. For MD,
the performance of the former is better, with the bias with subsoil
temperatures about 3 K.

In order to evaluate the performance of the emissivity estimates for
in situ measurements with high performance radiometers that measure
the skin temperature, the results from Sekertekin (2019) who used
twenty cloud-free matchups for four sites in the Surface Radiation
Budget Network (SURFRAD) established by NOAA, and the results from
García-Santos et al. (2018) who used twenty-one matchups at the
University of the Balearic Islands (UIB) are here analysed. Both
Sekertekin (2019) and García-Santos et al. (2018) used the Atmospheric

Correction Parameter Calculator (ACPC, Barsi et al., 2003; Barsi et al.,
2005) for the atmospheric correction. The former used an NDVI based
estimate for emissivity, while the latter used the ASTER GED. Table 4
replicates the results by Sekertekin (2019) for all twenty matchups and
for the subset of fifteen they deemed more reliable, and includes results
from the present study for unity and scene based emissivity for both
Nets. The results for the per scene estimated emissivity compare well
with those from Sekertekin (2019), with unb-RMSD of 2.2 K for the full
matchup dataset and 1.6–1.7 K for the subset. Surprisingly, the unity
emissivity gives the best performance, outperforming both other
methods that have a variable emissivity, especially in terms of slope and
MD. The lowest unb-RMSD is found for the Net1 estimated emissivity.
Overall results from the RMI AWS sites give similar slopes, but with
higher unb-RMSD and MD for the subsoil matchups (both by about 1 K).
Matchups with AWS radiometer temperature show slightly higher unb-
RMSD, but lower absolute MD. Matchups from García-Santos et al.
(2018) processed using the present study for unity and scene based
emissivity for both Nets are shown in Table 5. García-Santos et al.
(2018) found the Single Channel and Split Window Algorithms (SCA

Fig. 4. A comparison of the predicted and expected reflectance outputs from the 7 band 64 × 4 neural network for both TIRS bands, B10 (left) and B11 (right), using
the first subset of spectra (Net1). These plots show the results after 1000 training epochs with 90–10% training-validation split in each epoch.

Fig. 5. Same as Fig. 4 but for the second subset of spectra (Net2), excluding. the rock class.
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Fig. 6. A comparison of ASTER GED (left) and OLI median reflectance derived emissivities for Net1 (middle) and Net2 (right) for the BUZENOL site.

Fig. 7. Density scatter plots of the OLI median surface reflectance derived emissivities as function of ASTER GED emissivities for the BUZENOL study site. Top and
bottom rows show the results from Net1 and Net2. Left and right columns show the band 10 and 11 emissivities.
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and SWA) to outperform the results obtained from the ACPC in terms of
RMSD (1.6–2 K and 2.0–2.3 K respectively), but the ACPC giving the
lowest bias (-0.1 K). With the results from the present study, lowest
unb-RMSD is found again for unity emissivity, but the MD from both
neural nets is significantly lower (0.7 K for Net1 and 0.02 K for Net2),
similar to what was found for the AWS matchups. Using the ASTER GED
emissivity computed by García-Santos et al. (2018), the performance is
practically the same for the present method and the ACPC (similar to
findings in Vanhellemont (2020)). The linear regression slopes are

< 1 for these matchups, largely due to an underestimation of high
temperatures for unity emissivity, and an overestimation of low tem-
peratures for the neural nets (not shown). Differences in unb-RMSD are
quite low, indicating that the different methods have a similar relative
noise level, especially methods using a fixed or unity emissivity. The
differences between the unb-RMSD and the RMSD reflect the impact of
bias originating from the use of different emissivity datasets, also re-
presented in the variability of the MD.

4. Perspectives

Emissivity can be estimated from multispectral imagery and a
neural network approach trained on a spectral library. There are clear
conceptual advantages of estimating the emissivity per scene, but some
contradictory patterns are found between the NDVI approach and both
nets, and may depend on scene specific characteristics or surface
properties, or the imposed limits of the NDVI approach (Gao et al.,
2020). The NDVI approach has been previously found to be unsuitable

Fig. 8. Timeseries of emissivity from three locations within the BUZENOL site.
(Top) Field, (Middle) Pine forest, and (Bottom) Pine forest, cut in 2018. Dashed
lines connect the per scene estimates, solid lines give the mission median re-
sults. Vertical error bars show the standard deviation within a 3 × 3 30 m pixel
box around the selected pixel.

Fig. 9. B10 LST for BUZENOL derived from the L8/TIRS image of 2014–05-05
according to different emissivity settings.
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for impervious materials (Chen et al., 2016). The performance of the
neural nets may be impacted by the imbalance between the number of
spectra in the different classes in the training dataset, and both the nets
and the NDVI based method can be impacted by errors in the atmo-
spheric correction of OLI imagery. The inclusion of rock spectra in Net1
may be less appropriate for Belgian sites, as they are typically a
patchwork of fields, bare soils, trees, and man-made materials. Further
sensitivity analyses need to be performed using long term soil tem-
perature measurements in other countries with more varied surface
characteristics.

Single band LST derived from L8/TIRS using atmospheric para-
meters computed using ERA5 reanalysis profiles of relative humidity
and temperature was evaluated for 14 sites across Belgium that au-
tonomously measure air, soil, grass and subsoil temperatures, and 12
sites that measure broadband irradiance sky- and ground irradiances.
Strong linear correlations were found between LST and all measured
temperatures, indicating that satellite-derived LST could be used to
model any of the parameters. Excellent performance was found for the
matchups of LST with the broadband radiometer data, with for B10 the
neural nets giving unb-RMSD of 2.7–3.1 K, and MD 0.6 K for Net1 and
±0.1 K for Net2. Good performance was also found for the subsoil
temperatures which gave near unity slopes, and an unb-RMSD of
2.9–3.5 K across bands and emissivity sources, with a 0.8–3.7 K warm
bias. (Caused by the in situ subsoil temperatures being colder than the
in situ radiometer temperatures.) B10 and B11 matchups gave very
similar performances, and it seems the calibration and stray light cor-
rection efforts (Gerace and Montanaro, 2017) into the ”Collection 1”
data make both bands suitable for LST estimation. These results are on

par with other recent validation results from L8/TIRS using various
correction methods an in situ thermal radiometers (García-Santos et al.,
2018; Sekertekin, 2019; Meng et al., 2019), and the present study il-
lustrates how global networks of AWS could aid in validation of satellite
derived LST, by complementing radiometer measurements with higher
associated costs.

Although the performance of the LST products compared to in situ
measurements was similar across various emissivity datasets: (1) unity
emissivity, (2) ASTER GED, (3) NDVI based, and the ECOSTRESS based
neural networks developed in the present study, (4) Net1, scene s, (5)
Net1, median s, (6) Net2, scene s, and (7) Net2 s, median, the best
performance (lowest MD, unb-RMSD, offsets and unity slopes, with
highest r2) was found for the neural nets in comparison with the AWS
radiometer data (with MD± 0.1 K for Net2), and for unity emissivity for
the AWS subsoil data. Similarly, with the matchup dataset with
SURFRAD data published by Sekertekin (2019) and UIB data by
(García-Santos et al., 2018), and summarised in Tables 4 and 5, the best
performance was found for unity emissivity, although they provided a
more limited number of matchups. The RMSD values are lower for unity
emissivity likely due to the lack of noise introduced by the spatial
variability present in the other datasets. Of the neural networks de-
veloped in the present paper the net excluding the ”rock” spectra gave
slightly better performances, i.e. the absolute MD for Net2 is lower than
that for Net1 for B10. It should be noted that the AWS are situated in
long-term meteorological sites, that have a largely unchanging cov-
erage through the year, which may not fully demonstrate the power of a
scene by scene emissivity estimate. The study sites in the present paper
have significant vegetation coverage inside and surrounding the TIRS

Table 2
Summary of the matchups with the broadband radiometer temperature measurements at the Belgian AWS. n is the number of matchups, m and b the slope and offset
of the Reduced Major Axis regression, r2 is the square of Pearsons linear correlation coeffient. RMSD and MD are the Root Mean Squared and Mean Differences
between satellite and in situ measurements (satellite - in situ), with unb-RMSD the unbiased RMSD.

Band Emissivity n m b (°C) r2 RMSD (°C) unb-RMSD (°C) MD (°C)

LST10 unity 537 0.955 −1.332 0.947 3.431 2.617 −2.219
LST10 aster 537 0.954 −0.030 0.945 2.819 2.661 −0.931
LST10 ndvi 537 0.956 −0.219 0.945 2.877 2.664 −1.088
LST10 scene Net1 537 0.982 1.002 0.926 3.178 3.109 0.656
LST10 median Net1 537 0.955 1.499 0.944 2.772 2.705 0.607
LST10 scene Net2 537 0.950 0.883 0.942 2.757 2.755 −0.095
LST10 median Net2 537 0.957 0.940 0.941 2.757 2.755 0.101

LST11 unity 537 0.945 −1.148 0.939 3.589 2.810 −2.231
LST11 aster 537 0.941 0.296 0.936 3.014 2.887 −0.864
LST11 ndvi 537 0.943 −0.217 0.937 3.151 2.856 −1.331
LST11 scene Net1 537 0.964 0.640 0.920 3.223 3.222 −0.067
LST11 median Net1 537 0.940 1.269 0.934 2.946 2.944 0.088
LST11 scene Net2 537 0.932 0.932 0.933 2.983 2.955 −0.406
LST11 median Net2 537 0.943 0.675 0.933 2.990 2.956 −0.450

Table 3
Same as Table 2 but for matchups with the in situ subsoil temperature measurements.

Band Emissivity n m b (°C) r2 RMSD (°C) unb-RMSD (°C) MD (°C)

LST10 unity 501 1.011 0.586 0.927 3.030 2.929 0.777
LST10 aster 501 1.011 1.877 0.927 3.587 2.939 2.057
LST10 ndvi 501 1.013 1.656 0.925 3.520 2.978 1.878
LST10 scene Net1 501 1.040 3.046 0.903 5.086 3.464 3.725
LST10 median Net1 501 1.011 3.412 0.916 4.792 3.159 3.604
LST10 scene Net2 501 1.008 2.802 0.917 4.284 3.121 2.935
LST10 median Net2 501 1.013 2.984 0.922 4.411 3.038 3.197

LST11 unity 501 1.001 0.740 0.919 3.163 3.070 0.758
LST11 aster 501 0.997 2.197 0.918 3.760 3.092 2.140
LST11 ndvi 501 1.000 1.634 0.917 3.518 3.114 1.636
LST11 scene Net1 501 1.024 2.642 0.898 4.652 3.509 3.054
LST11 median Net1 501 0.993 3.320 0.903 4.649 3.367 3.206
LST11 scene Net2 501 0.989 2.815 0.909 4.183 3.254 2.628
LST11 median Net2 501 0.998 2.651 0.913 4.124 3.186 2.619
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pixel, and the comparison should be extended to non-vegetated and
homogeneous sites. The MD for the neural nets is about 1 K higher (and
hence closer to 0 for the broadband radiometer data) than those when
using the NDVI and ASTER GDEM emissivity estimates, although giving
approximately the same unb-RMSD. This higher MD is consistent with
the generally lower emissivities retrieved from the neural nets.

5. Conclusions

• Neural networks trained on the ECOSTRESS spectral library can
reliably (1% RMSD) estimate emissivity in thermal infrared bands
from multispectral visible to shortwave infrared reflectance, with a
low negative bias. The estimation of emissivity in two thermal
channels on TIRS from concomitant 7 band OLI s imagery is de-
monstrated.
• The OLI and neural network derived emissivity gives low mean
differences compared to the ASTER Global Emissivity Dataset
(0.6–2.6% MARD), but a larger emissivity range, potentially due to
the higher spatial resolution of the OLI dataset. TIRS derived surface
temperatures using the OLI emissivities have a crisper appearance
when using the OLI derived emissivity, and the OLI derived

emissivity may lead to a ‘sharpening’ of the TIRS data.
• TIRS derived LST compare very well to in situ measurements of
broadband radiometer temperatures at 12 Automated Weather
Stations in fragmented landscapes across Belgium. Matchup results
for B10 show near unity slopes, with an unb-RMSD of 2.6–3.1 K and
a MD of −2.2–0.6 K, with the best performing emissivity source
(Net2) giving an unb-RMSD around 2.8 K and MD of ±0.1 K, de-
pending on whether the scene-specific or mission median emmi-
sivity was used. TIRS derived LST also compare well to in situ
measurements of subsoil temperatures at 14 AWS. Matchup results
with subsoil measurements show an unb-RMSD around 3 K and MD
from 1–4 K with near unity slopes.
• There were only small differences between using the neural network
derived emissivity from the per-scene or the mission median re-
flectance, with the per-scene emissivity generally having a lower
MD and slightly higher RMSD compared to the mission median. This
indicates that the results from the mission median data could also be
used for processing night-time data in the absence of optical data.
• Better performances may be achieved using high performance in situ
radiometers which measure the land surface skin temperature, even
though the results achieved here are comparable to matchup

Fig. 10. Matchups for Band 10 with temperatures measured using broadband radiometers at the Belgian AWS: (top): unity, ASTER GED, and NDVI approach,
(middle) scene specific Net1 and Net2, and (bottom) region median Net1 and Net2.
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analyses done with in situ radiometers (García-Santos et al., 2018;
Sekertekin, 2019). The use of temperature measurements from
dense networks of meteorological observations does significantly
increase the number of matchups, and can complement the ob-
servations from sites equipped with thermal radiometers.> 2000
potential matchups of satellite overpasses with bounding in situ
measurements were identified, with> 500 remaining after auto-
mated quality control (cloud masking).
• Although good performance was found for the broadband

radiometer matchups and the neural network derived emissivity, for
the datasets presented by Sekertekin (2019) andGarcía-Santos et al.
(2018), and the subsoil temperature matchups presented here, there
is no obvious performance improvement of using a non-unity
emissivity value. Further investigations could be the measurement
of temperature in contrasting land covers within the same region of
interest, to establish the importance of a spatially and temporally
variable emissivity. The impacts of the number of matchups and
range in the validation data need to be further investigated, and

Fig. 11. Same as Fig. 10 but for subsoil temperatures.

Table 4
The matchups with SURFRAD data as presented by Sekertekin (2019), and results from the present study.

Band Study in situ n m b (°C) r2 RMSD (°C) unb-RMSD (°C) MD (°C)

LST10 Sekertekin (2019) SURFRAD 20 1.172 −2.696 0.960 3.114 2.248 2.155
LST10 present - unity SURFRAD 20 1.093 −2.181 0.946 2.172 2.125 0.449
LST10 present - scene Net1 SURFRAD 20 1.128 −0.757 0.952 3.592 2.162 2.869
LST10 present - scene Net2 SURFRAD 20 1.110 −0.738 0.960 3.058 1.934 2.369

LST10 Sekertekin (2019) SURFRAD (sub) 15 1.127 −2.130 0.968 2.168 1.774 1.247
LST10 present - unity SURFRAD (sub) 15 1.040 −1.348 0.946 1.887 1.865 −0.292
LST10 present - scene Net1 SURFRAD (sub) 15 1.059 0.405 0.962 2.542 1.614 1.964
LST10 present - scene Net2 SURFRAD (sub) 15 1.081 −0.406 0.960 2.452 1.729 1.738
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perhaps the study could be extended to include the meteorological
measurements from other countries.
• Quality control of the imagery was automated due to the large
amount (> 2000) of potential matchups. Some scenes that would
not pass manual quality assessment, e.g. presence of very thin clouds
that cannot easily be detected spectrally, are still included in the
matchup exercise. Further improvement of the validation results are
expected if automated quality control can be improved.
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