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Abstract: This paper reviews the state of the art of protocols for measurement of water-leaving 
radiance in the context of fiducial reference measurements (FRM) of water reflectance for satellite 
validation. Measurement of water reflectance requires the measurement of water-leaving radiance 
and downwelling irradiance just above water. For the former there are four generic families of 
method, based on: 1) underwater radiometry at fixed depths; or 2) underwater radiometry with 
vertical profiling; or 3) above-water radiometry with skyglint correction; or 4) on-water radiometry 
with skylight blocked. Each method is described generically in the FRM context with reference to 
the measurement equation, documented implementations and the intra-method diversity of 
deployment platform and practice. Ideal measurement conditions are stated, practical 
recommendations are provided on best practice and guidelines for estimating the measurement 
uncertainty are provided for each protocol-related component of the measurement uncertainty 
budget. The state of the art for measurement of water-leaving radiance is summarized, future 
perspectives are outlined, and the question of which method is best adapted to various 
circumstances (water type, wavelength) is discussed. This review is based on practice and papers of 
the aquatic optics community for the validation of water reflectance estimated from satellite data 
but can be relevant also for other applications such as the development or validation of algorithms 



Remote Sens. 2019, 11, 2198 2 of 37 

 

for remote-sensing estimation of water constituents including chlorophyll a concentration, inherent 
optical properties and related products. 

Keywords: water reflectance; satellite validation; Fiducial Reference Measurements; water-leaving 
radiance  

 

1. Introduction 

The objective of this paper is to review the state of the art of protocols for the measurement of 
water-leaving radiance, as used for the validation of satellite remote-sensing data over water. 

1.1. The Need for Fiducial Reference Measurements for Satellite Validation 

Satellite remote-sensing data is now used routinely for many applications, including monitoring 
of oceanic phytoplankton in the context of global climate change, detection of harmful algae blooms 
in coastal and inland waters, management of sediment transport in coastal water, estuaries and ports, 
the optimization and monitoring of dredging operations, etc. [1]. To be able to trust and use the 
remote-sensing data, these must be validated, usually by “matchup” comparison of simultaneous 
measurements by satellite and in situ. The terminology of “fiducial reference measurements (FRM)” 
was introduced to establish the requirements on the in situ measurements that can be trusted for use 
in such validation. Using the definition proposed in the context of sea surface temperature 
measurements [2], the defining mandatory characteristics of a FRM are: 
• An uncertainty budget for all FRM instruments and derived measurements is available and 

maintained, traceable where appropriate to the International System of Units/Système International 
d’unités (SI), ideally through a national metrology institute. 

• FRM measurement protocols and community-wide management practices (measurement, 
processing, archive, documents, etc.) are defined and adhered to 

• FRM measurements have documented evidence of SI traceability and are validated by 
intercomparison of instruments under operational-like conditions. 

• FRM measurements are independent from the satellite retrieval process. 
The second term above, given in bold, situates the current review, which should provide such a 

definition of measurement protocols for the water-leaving radiance measurement.  

1.2. Scope and Definitions 

This review is focused on measurements of the water-leaving radiance as necessary for the 
validation of satellite data products for water reflectance at the bottom of the atmosphere. In the 
present review, the terminology of “remote-sensing reflectance”, 𝑅 , is used where 𝑅 (𝜆, 𝜃, 𝜙) = 𝐿 (𝜆, 𝜃, 𝜙)𝐸 (𝜆)  (1) 

where 𝐸 (𝜆) is the spectral downward plane irradiance, also called “above-water downwelling 
irradiance”, and 𝐿 (𝜆, 𝜃, 𝜑) is the water-leaving radiance, defined, e.g., see [3], as the component of 
above-water directional upwelling radiance that has been transmitted across the water–air interface 
in the upward direction measured by the sensor and defined by viewing nadir angle 𝜃 and azimuth 
angle 𝜑. The conventions used for these angles are defined in Figure 1. In other words, and as 
illustrated in Figure 2, 𝐿  is the above-water directional upwelling radiance, 𝐿 , just above the air–
water interface, after removal of radiance from air–water interface reflection, 𝐿 : 𝐿 = 𝐿 − 𝐿  (2) 

The latter term is called hereafter “skyglint” but may include also sunglint reflected from wave 
facets. 
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Figure 1. Nadir and azimuth viewing angle conventions illustrated for a reference system centred on 
the water surface (black dot). (a) Viewing nadir angle, θ, is measured from downward vertical axis: 
upward radiances are viewed at 𝜃 < 𝜋 2⁄ , downward radiances (from sky and sun) are viewed at 𝜃 𝜋 2⁄ . (b) Azimuth viewing angle, 𝜙, and relative azimuth viewing angle, Δ𝜙, are measured for 
viewing direction clockwise from North and sun respectively: radiance viewed by a radiometer 
pointing towards North has azimuth 0 and radiance viewed by a radiometer pointing towards and 
away from sun have relative azimuth 0 and 𝜋 respectively. 𝐿  is generally measured for nadir viewing geometry by under water or on water approaches 

(see Sections 2, 3 and 5) and generally measured for an off-nadir geometry by above-water 
approaches (see Section 4). When measured for (or extrapolated by a suitable model to) the nadir 
viewing geometry, the term nadir water-leaving radiance will be used where 𝐿 (𝜆) = 𝐿 (𝜆, 𝜃 = 0°). 

All radiometric quantities in this review are assumed to vary spectrally but for brevity the 
dependence on wavelength, 𝜆, is generally omitted in the terminology. 

 
Figure 2. Illustration of definitions of water-leaving radiance, 𝐿 , above and below water upwelling 
radiances, 𝐿 and 𝐿 , above-water downwelling (sky) radiance in the specular reflection 
direction,  𝐿 , above-water upwelling radiance from reflection at the air–water interface 
(“skyglint”), 𝐿 , and downwelling irradiance, 𝐸 . See also [4]. The widths of the arrows for 𝐸  
represent the zenith cosine weighting for the different incident angles. 
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The validation of 𝑅  thus requires simultaneous measurement of two parameters: 𝐸 (𝜆) and 𝐿 (𝜆, 𝜃, 𝜑), although an alternative approach is to validate only 𝐿 (𝜆, 𝜃, 𝜑). A companion paper [5] 
focuses on measurement of 𝐸 (𝜆). The present review focuses on measurement of 𝐿 (𝜆, 𝜃, 𝜑), 
reviewing the state of the art of measurement protocols in the FRM context, particularly as regards 
components of the measurement uncertainty budget relating to the measurement protocol. 

The focus here is on aquatic applications, including the full range and diversity of water bodies 
from deep oceans through coastal and estuarine waters to ports and inland lakes.  

Measurements of 𝑅  and hence 𝐿 (𝜆, 𝜃, 𝜑) are also relevant outside the satellite validation 
context, for example when simultaneous in situ measurements are made of  𝑅  and in-water 
properties such as chlorophyll a concentration or inherent optical properties (IOPs) (without 
simultaneous satellite data) for algorithm calibration/validation purposes [6] or when in situ  𝑅  is 
used on its own for monitoring [7]. These applications are not specifically covered here, although 
many considerations of the measurement protocols described here are valid for all such applications.  

Using the terminology of the International Standards Organisation (ISO, 2007) the spectral range 
of primary interest here is the visible (380 nm to 760 nm) and the lower wavelength part of the near 
infrared (760 nm to 1400 nm) ranges [8]. The considerations for measurement of 𝐿  given here 
should be valid also for the near ultraviolet (300 nm to 400 nm) and middle infrared (1400 nm to 3000 
nm), although the importance of the various uncertainty sources may be different because of the 
different intensity and angular distribution of downwelling irradiance and upwelling radiance and 
the instrumentation (radiance sensor detector and fore-optics) may have different properties in these 
ranges. Although 𝐿  is measurably non-zero in the range 1000 nm to 1100 nm in extremely turbid 
waters [9], 𝐿  will be effectively negligible for the longer near infrared from 1100 nm to 1400 nm and 
the middle infrared (1400 nm to 3000 nm) wavelengths because of the very high pure water 
absorption at these wavelengths. The need for 𝐿  measurements in the range 1100 nm to 3000 nm is 
very limited, because satellite 𝑅  data will typically be set to zero during atmospheric correction. 
However, there may be some interest in this range for quality control of above-water 𝐿  
measurements, with non-zero measurement indicating a data quality problem, e.g., skyglint or 
sunglint contamination or floating material, for the whole spectrum. Also, there may be some interest 
in the range 1100 nm to 3000 nm for applications such as measurement of floating aquatic vegetation, 
although this is not strictly speaking 𝐿  and should be measured only using above-water radiometry 
and without a skyglint/sunglint correction for the percentage of surface covered by vegetation [10]. 

The protocols described here are relevant for validation of a vast range of optical satellites 
including the dedicated medium resolution “ocean colour” missions, such as AQUA/MODIS, 
Sentinel-3/OLCI, JPSS/VIIRS, etc., but also the operational high resolution missions such as 
Landsat-8/OLI and Sentinel-2/MSI, as well any other optical mission from which water reflectance 
can be derived, including the geostationary COMS/GOCI-1 and MSG/SEVIRI, the extremely high 
resolution Pléiades and PlanetDove satellite constellations, airborne data, etc.  

The current document does not try to identify a “best” protocol, nor does it aim to prescribe 
mandatory requirements on specific aspects of a measurement protocol such as “best nadir and 
azimuth angles for above-water radiometry” or “minimum distance for ship shadow avoidance”. 
While such prescriptions have great value in encouraging convergence of methods and in challenging 
scientists to make good measurements, the diversity of aquatic and atmospheric conditions where 
validation is required, the diversity of radiometers and platforms and the corresponding diversity of 
measurement protocols suggests that more flexibility is needed. This flexibility is acceptable in the 
FRM context provided that each measurement is accompanied by a SI-traceable uncertainty budget 
that is a) based on a full analysis of the protocol and b) that is itself validated, e.g., by measurement 
intercomparison exercises [11–13] or by optical closure with inherent optical property measurements 
and radiative transfer modelling [14,15].  

The present review aims to provide an overview of all relevant protocols, including guidelines 
for radiometer deployment and quality control of data and an overview of elements that should be 
considered in the complete uncertainty analysis of a measurement protocol. The approach is 
structured as follows: for each aspect of the measurement protocol contributing to measurement 
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uncertainty the ideal situation is summarized in a single sentence in bold face, e.g., “The radiance 
sensor should be vertical” when making underwater radiance measurements. This is followed by a 
discussion of techniques to achieve or monitor this (e.g., slow descent free-fall platforms, 
measurement of tilt, removal of tilted data), practical considerations and problems (e.g., need for 
multiple deployments to reduce uncertainties for fast free-fall deployments) and approaches to 
estimate uncertainty when this ideal situation is not achieved (e.g., model studies, experiments).  

For a general treatment of uncertainties in measurements, including a recommended 
terminology (e.g., “expanded uncertainty”) and generic methods for estimating each component of 
uncertainty and combining uncertainties to achieve a total uncertainty the reader is referred to the 
Guide to the Expression of Uncertainty in Measurement (GUM) of the ISO [16]. 

The present review covers only aspects of the measurement relating to the protocol, including 
radiometer deployment, data acquisition and processing aspects but excluding any uncertainties 
arising from radiometer imperfections, such as calibration (including immersion coefficients for 
underwater radiometry), thermal sensitivity, spectral response (straylight/out of band effects) and 
spectral interpolation, non-linearity and angular response and polarization sensitivity. The 
decomposition of measurements into “protocols” (deployment, data acquisition and processing 
methods) and “radiometers” is adopted here in order to conveniently represent the wide diversity of 
possible combinations of methods and radiometers in a synthetic and generic way. However, it is 
fully recognised that “protocol” and “radiometer” must be coupled for the assessment of the 
uncertainty of any specific measurement. For example, the uncertainty associated with the skyglint 
correction in above-water radiometry or the uncertainty associated with wave-focusing effects in 
underwater radiometry depend on the speed (integration time) of the radiometer used (as well as the 
number of replicate measurements and the temporal processing and quality control processes). These 
radiometer-related aspects deserve a review paper of their own—the reader is referred to Volume II 
of the National Aeronautics and Space Administration (NASA) Ocean Optics Protocols [17] and 
Section 3 of [18] and Chapters 2 and 3 of [19].  

The present review is limited in scope to the measurement of 𝐿 (𝜆, 𝜃, 𝜑) in a single viewing 
geometry and does not discuss bidirectional reflectance distribution function (BRDF) corrections that 
can be applied to data to facilitate in situ vs. satellite comparisons. For example, a BRDF correction 
may be applied to the satellite data (and to off-nadir above-water in situ measurements) to estimate 
the nadir-viewing water-leaving radiance from the off-nadir viewing geometry. Alternatively, a 
BRDF correction may be applied to the in situ measurement to estimate water-leaving radiance in the 
satellite viewing geometry. This and other topics relating to the use of 𝐿 (𝜆, 𝜃, 𝜑) measurements for 
satellite validation, including the impact of the different space and time scales [20,21], should be 
reviewed in a separate paper. The measurement of 𝐸 (𝜆), as needed to calculate 𝑅 , and as needed 
for temporal correction and/or quality control of 𝐿 (𝜆, 𝜃, 𝜑) in some protocols is reviewed in [5]. 

In the satellite validation context covered by this review, the focus is on clear sky conditions. 
There is no clear consensus regarding an objective definition of “clear sky” conditions, although Web 
Appendix 1 of [22] proposes for moderate sun zenith angles the test 𝐿 /𝐸 (750 𝑛𝑚) < 0.05 where 𝐿  was sky radiance at 135° relative viewing azimuth to sun and 140° viewing nadir angle. This test 
will detect clouds in front of the sun because of the consequent increase in 1/𝐸  and will detect 
clouds in the specified sky-viewing direction because clouds have greater 𝐿  than blue sky. A more 
complete test for “clear sky” conditions could involve use of hemispherical camera photos but would 
need automated image analysis for an objective test. 

1.3. Previous Protocol Reviews 

Most of the pre-2004 in situ measurements of water reflectance were made for the purpose of 
oceanic applications and most aquatic optics investigators base their measurement protocol in some 
way on the NASA Ocean Optics Protocols [17] and the references contained within that multi-volume 
publication. While the methods for measurement of 𝐿  from underwater radiometry using fixed-
depth measurements or vertical profiles were already well established at the time of that protocol 
collection, there has been considerable evolution of methods for above-water radiometry and 
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development of the “skylight-blocked approach (SBA)”. Current practices have also been affected by 
technological evolutions since 2004 including: 
• More frequent use of unsupervised measurements for validation, e.g., AERONET-OC [23] and 

Bio-Argo [24], instead of shipborne supervised measurements;  
• greater need for validation measurements in coastal and inland waters rather than the prior 

focus on oceanic waters; 
• reduction in cost and size of radiometers, e.g., facilitating multi-sensor above-water radiometry 

and reducing self-shading problems for underwater radiometry; and 
• increased availability of hyperspectral radiometers. 
A draft of new Protocols for Satellite Ocean Color Data Validation [19] has been released within the 
framework of the International Ocean Colour Coordinating Group (IOCCG), providing many 
updates on the previous NASA-2004 collection. 

1.4. Overview of Methods and Overview of this Paper 

Protocols for measurement of 𝐿  are grouped into four broad families of methods:  
• Underwater radiometry using fixed-depth measurements (“underwater fixed depths”) 
• Underwater radiometry using vertical profiles (“underwater profiling”) 
• Above-water radiometry with sky radiance measurement and skyglint removal (“above-water”) 
• On-water radiometry with skylight blocked (“skylight-blocked”) 
For each family of method, the measurement equation is defined and the measurement parameters 
are briefly described in Sections 2, 3, 4 and 5 respectively. The elements that should be included for 
estimation of total protocol-related measurement uncertainty are discussed with some key 
considerations, guidelines and recommendations. The “protocol-related” measurement uncertainty 
includes both known imperfections in the protocol (e.g., models for reflectivity of the air–water 
interface) and deployment-related imperfections (e.g., tilting of sensors). Finally, the question of 
which protocol is best adapted to which water types and wavelengths is considered and some 
directions for probable future evolution of protocols are outlined in Section 6. 

2. Underwater Radiometry—Fixed-Depth Measurements 

2.1. Measurement Equation 

In fixed-depth underwater radiometry, as typified by BOUSSOLE [25,26] and MOBY [27–29], 
radiometers are deployed underwater and attached to permanent floating structures, to measure 
nadir upwelling radiance, 𝐿 (𝑧), at two or more depths, 𝑧 = 𝑧 , 𝑧 , …. —see Figure 3. A further 
measurement is made above water of downwelling irradiance, 𝐸 , to allow for calculation of 𝑅  
via Equation (1) and to monitor for possible variation of illumination conditions during the 
measurement. In the case of MOBY these 𝐿 (𝑧) measurements are made with 𝑧 = 1 m, 𝑧 = 5 m 
and 𝑧 = 9 m , while the BOUSSOLE system makes measurements at 𝑧 = 4 m,  and 𝑧 = 9 m . 
Strictly speaking, these are fixed nominal depths because actual depth varies with tilt of structures 
and waves—see Section 2.2.5. 
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Figure 3. Schematic of fixed-depth underwater measurements. 

The nadir water-leaving radiance, 𝐿 , is calculated by first estimating the nadir upwelling 
radiance just beneath the water surface, 𝐿 (0 ) , by extrapolating from, preferably, the two 
shallowest depth measurements 𝑧  and 𝑧  assuming that the depth variation of 𝐿 (𝑧) between the 
surface, 𝑧 = 0, and 𝑧 = 𝑧 , is exponential with constant diffuse attenuation coefficient for upwelling 
radiance, 𝐾 . Thus, using the convention that depths beneath the water surface are considered as 
positive (but retaining the notation 0  for radiance just beneath the water surface), 𝐿 (0 ) = 𝐿 (𝑧 , 𝑡 )𝑒𝑥𝑝 𝐾 𝑧  (3) 

with, 𝐾 = 1𝑧 − 𝑧 𝑙𝑛 𝐿 (𝑧 , 𝑡 )𝐿 (𝑧 , 𝑡 ) 𝐸 (𝑡 )𝐸 (𝑡 )  (4) 

where 𝐸 (𝑡 ) and 𝐸 (𝑡 ) represent the downwelling irradiance measured at times 𝑡  and 𝑡 , 
corresponding to the times of measurement of 𝐿 (𝑧 ) and 𝐿 (𝑧 ). If these radiances are measured 
at precisely the same time, as is the case for most such implementations, then Equation (4) simplifies 
to:  𝐾 = 1𝑧 − 𝑧 𝑙𝑛 𝐿 (𝑧 )𝐿 (𝑧 )  (5) 

Finally, the water-leaving radiance is obtained from 𝐿 (0 ) by propagating the latter across 
the water–air interface using, 𝐿 = 𝑇𝑛 𝐿 (0 ) (6) 

where 𝑇  is the Fresnel transmittance of radiance from water to air and 𝑛  is the refractive index of 
water. The refractive index of air, 𝑛 , is here assumed equal to unity. 𝑇 , which depends also on 𝑛 , can be easily calculated from Fresnel’s equations in the case of a flat water–air interface, e.g., [3] 
chapter 4.2, and has a typical value of 0.975 at normal incidence for oceanic water. 𝑇 𝑛⁄  takes a 
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typical value of 0.543 for oceanic water [30]. In the case of a wave-roughened interface, by combining 
the reciprocity condition between radiance reflectance and transmittance coefficients [31] and the 
simulations of Figure 18 of [32], it was established that there is negligible (much less than 1%) 
difference for 𝑇  between a flat interface and a wave-roughened interface for wind speeds up to 20 
m/s (neglecting the whitecaps and breaking waves that occur already at wind speeds much less than 
20 m/s) [33]. However, for a more precise calculation of 𝑇 𝑛⁄  it is necessary to take account of 
wavelength, salinity and temperature variations of the refractive index, 𝑛  [34], both for oceanic 
waters [33] and for inland waters. 

The choice of depth, 𝑧 , for the shallowest measurement is determined by the competing 
interests of a shallow depth to reduce errors due to propagation to the surface and reducing the 
chances of the shallow depth measurement broaching the surface. This choice is then dependent on 
the sea-state expected at the measurement location. The choice of depth, 𝑧 , for the second 
measurement is likewise a compromise between increasing 𝑧 − 𝑧 , which reduces the uncertainty in 
the derived 𝐾 , the possibility of an inhomogeneous water column over the measurement depth 
thus not being representative of 𝐾  from 𝑧  to the surface, the natural variation in 𝐾  due to 
inelastic processes [35], possible increased signal to noise because 𝐾  is different at each 
wavelength, and an increase in overall length of the structure. 

In addition to the time variation of illumination conditions due to time-varying sun zenith angle 
and diffuse atmospheric transmission (aerosols, clouds) which is accounted for in 𝐸 (𝑡 )  and 𝐸 (𝑡 ), it is necessary to account for the temporal variation of underwater radiances 𝐿 (𝑧 ) and 𝐿 (𝑧 ) associated with waves at the air–water interface. Wave focusing and defocusing effects [36–
39] and wave shadowing [40] may have very fast time scales, less than 1 s, and very short length 
scales, less than 1 cm, giving a time-varying 3D light field. These effects are reduced by averaging for 𝐿 (𝑧 ) and 𝐿 (𝑧 ) over a large number of measurements and making the extrapolation to depth 0  with the time-averaged values 𝐿 (𝑧 )  and 𝐿 (𝑧 )  or 𝐿 (𝑧 ) 𝐸 (𝑡 ) and 𝐿 (𝑧 ) 𝐸 (𝑡 ) 
(performing time-averaging on each parameter before taking the ratio). The probability density 
functions for 𝐸 (𝑡 ) and 𝐿 (𝑧, 𝑡) are skewed near the surface and approach normal distributions 
with depth [39,41]. For BOUSSOLE data, median averaging is used [26]. For MOBY mean averaging 
is used as defined in p21 of [28]. 

At high wind speed and wave height various problems may occur affecting measurement 
quality or usability. For example, whitecaps and/or breaking waves may affect the water-air Fresnel 
transmittance. Tilt may become high. Depth measurement may become uncertain or sensors may 
even emerge from water. Such conditions are usually excluded from satellite data products and 
validation analyses anyway because the air–water interface correction of satellite data is also not 
suited for high whitecap coverage and/or breaking wave conditions. There is no clear consensus on 
acceptable wind speed for the 𝐿  measurements, and this will clearly be dependent on the specific 
deployment equipment. A limit of 10 m/s would give an estimated whitecap coverage of 1% for 
fully-developed wind waves [42]. 

2.2. Protocol-Dependent Sources of Uncertainty 

The protocol-related sources of uncertainty are described in the following subsections.  

2.2.1. Non-Exponential Variation of Upwelling Radiance with Depth 

The vertical variation of upwelling radiance between the lowest measurement depth and the air–
water interface should be known 

The essential assumption of exponential variation of 𝐿 (𝑧) used to extrapolate measurements 
from two fixed depths to just beneath the water surface is only an approximation of reality. Firstly, 
the water inherent optical properties themselves may vary with depth [43], for example because of 
vertical variability related to thermal stratification including a “Deep Chlorophyll Maximum”, or 
related to resuspended or river plume particles in coastal waters. Secondly, inelastic processes such 
as Raman scattering and fluorescence [35] cause non-exponential variation of radiance, particularly 
in the red and near infrared for Raman scattering. Thirdly, while for a homogeneous aquatic medium 
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the attenuation with distance of a collimated beam of light can indeed be expected to be exponential 
the same does not hold for a diffuse light field. The angular distribution of upwelling light varies 
with depth, e.g., [44], and 𝐾  depends on the angular distribution of light and so may be expected 
to vary with depth even for a homogeneous water column and without inelastic scattering—see 
Figures 9.5 and 9.6 of [3]. 

If a more appropriate non-exponential functional form can be found to represent the vertical 
variation of radiance with depth, e.g., by characterising vertical variability from profile 
measurements or from radiative transfer modelling [45], it is possible to modify Equation (3) to 
improve accuracy of the extrapolation, as suggested by using Case 1 models in Appendix A of [26] 
and [46]. 

The difficulties of non-exponential variation of upwelling radiance with depth become greater 
in waters or at wavelengths where the diffuse attenuation coefficient is high compared to the 
reciprocal of the measurement depths, e.g., in turbid waters and/or at red and near infrared 
wavelengths. 

The uncertainty estimate associated with 𝐾  can be validated by measuring 𝐾  at high 
vertical resolution and close to the surface, e.g., from occasional shipborne campaigns. 

2.2.2. Tilt Effects 

The radiance sensors should be deployed vertically 
Non-verticality of radiometers, e.g., caused by wave- or current-tilting of floating structures, will 

give uncertainty in the measurements of both 𝐸  and 𝐿 (𝑧) because of the anisotropic nature of 
the down- and up-welling light fields respectively. Therefore, it is necessary to measure the tilt of 
radiometers using fast response inclinometers and perform appropriate filtering of non-vertical data 
and/or averaging of data to reduce tilt effects. 

The impact of tilt on 𝐸  measurements is discussed in [5].  
Tilt can also affect the effective underwater radiance measurement depths, 𝑧 , which should 

therefore be measured continuously, e.g., using pressure sensors close to the optical sensors.  
Obviously, minimisation of tilt can be a consideration in the design or in the location of 

validation measurement structures. As an example, the BOUSSOLE structure was designed to have 
low sensitivity to swell. The mean tilt of the buoy was measured as 4° (with 4° of pitching) for a 4.6 
m swell of period 5.2 s [25] and data is rejected for tilt greater than 10° [26].  

2.2.3. Self-Shading and/or Reflection from Radiometer and/or Superstructure 

The light field should not be perturbed by the measurement radiometer and platform  
In practice, the light field that is being measured is itself perturbed by the presence of solid 

objects such as the radiometers and the superstructure used to mount them. These perturbations are 
most pronounced when the water volume being measured (roughly defined horizontally by 
radiometer field of view and vertically by the diffuse attenuation coefficient, 𝐾 ) is in some way 
shadowed from direct sun, although shadowing of downwelling skylight and side/back-reflection of 
down/upwelling light also contribute to optical perturbations. 

Shading can lead to either under- or over-estimation of 𝐾  depending on relative impacts at 
the depths 𝑧  and 𝑧 . 

As regards the radiometers, self-shading can be minimised by using a sensor with fore-optics of 
small diameter compared to the mean free path of photons. This requirement becomes more 
challenging at longer wavelengths, such as in the near-infrared where the water absorption 
coefficient is high. A partial correction for self-shading effects for a radiometer with idealised 
geometry was proposed [47] for a concentric sensor, tested experimentally [48] and further 
generalized, including shallow water effects [49]. This correction requires measurement or estimation 
of IOPs. 

As regards the superstructure, self-shading can be minimised by limiting the cross-section of the 
structure above the radiometers, e.g., by a sub-surface buoy [25] rather than surface buoy, and by 
increasing the distance between structure and radiometer, e.g., by the use of horizontal arms. The use 
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of multiple redundant radiometers at the same depth but differently affected by superstructure 
and/or the measurement of superstructure azimuth and the identification/correction [50] of possible 
superstructure effects can also reduce superstructure shading uncertainty and/or be used to validate 
uncertainty estimates.  

2.2.4. Bio-Fouling 

The fore-optics of the radiance sensors should be kept clean 
In addition to sensitivity changes inherent to the radiometer, modification of the transmissivity 

of the fore-optics can occur because of growth of algal films, particularly for long-term underwater 
deployments. Such bio-fouling can be mitigated: a) by the use of shutters and/or wipers (provided 
the latter do not themselves scratch optical surfaces), b) by use of copper surfaces and/or release of 
anti-fouling compounds close to the optical surface, e.g., p15 of [28], or by ultraviolet (UV-C) 
irradiation [51] c) by limiting the duration of deployments between maintenance [26], d) by 
monitoring optical surfaces in some way, e.g., occasional diver-operated underwater calibration 
lamps, e.g., p15 of [28], and e) by regular diver cleaning of optics during the deployment. 

In general, downward facing-sensors used to measure 𝐿  are much less prone to bio-fouling 
than upward-facing sensors used to measure 𝐸  [52]. 

An accumulation of bubbles on the horizontal surface of the 𝐿  fore-optics would also affect 
data and radiometers should be designed to avoid trapping of bubbles, e.g., by removal of any 
concave shields or collimators used for some above-water radiance sensors. 

Fouling of the above-water upward-facing 𝐸  sensor is described in [5]. 
Residual uncertainty related to bio-fouling (taking account of any biofouling corrections, e.g. 

linear drift) can be estimated by comparing post-deployment calibrations before and after cleaning 
and by comparing pre-/post-cleaning operations by divers using a portable calibration source or by 
using 𝐿  time series in stable conditions [53].  

2.2.5. Depth Measurement 

The depth of radiance measurements should be accurately known 
The measurement equation implies that the depth of measurement is accurately known. For 

large and permanent structures such as MOBY and BOUSSOLE, measurement of depth can be 
achieved quite precisely using pressure sensors (including a simultaneous above-water measurement 
of atmospheric pressure [54]) accounting for any time variation because of tilt and wave and current 
effects. If fixed-depth measurements are used at shorter vertical length scales, e.g., in shallow lakes 
or for measurement in high attenuation waters or wavelengths, depth measurements should be made 
sufficiently accurate so as to not contribute significantly to overall measurement uncertainty. 

2.2.6. Fresnel Transmittance 

The Fresnel transmittance for upwelling radiance should be accurately calculated 
The Fresnel transmittance, 𝑇 , used to propagate upwelling nadir radiance across the water 

surface in Equation (6), is often assumed to have a constant value of 0.543 in sea water, but does vary 
with wavelength, salinity and temperature via the index of refraction of water—see also Section 2.1 
and [33] where improvements on use of a constant value and uncertainties associated with 𝑇  are 
discussed.  

2.2.7. Temporal Fluctuations 

Temporal fluctuations associated with surface waves should be removed 
Measurements are averaged over a certain interval of time (see Section 2.1) to remove as far as 

possible the fast variations associated with wave focusing/defocusing effects. Simulations can be 
performed [39,41] to assess the effectiveness of different averaging approaches/time intervals and 
any associated residual uncertainty. 
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If measurements from all sensors are not simultaneous the corresponding time corrections 
should be made and residual uncertainty estimated. 

2.3. Variants on the Fixed-Depth Underwater Radiometric Method 

Section 2 has been written primarily for MOBY/BOUSSOLE-style systems where radiometers 
are deployed at fixed underwater depths attached to a structure tethered to the sea bottom in an 
approximately constant geographical location (notwithstanding possible small horizontal 
movements associated with currents). Variants on this method, which are based on the same essential 
measurement equation, are briefly discussed here. 

While the MOBY/BOUSSOLE superstructures are designed with small optical cross-section to 
minimise optical perturbations, buoys/platforms designed for other purposes, e.g., hydrographic 
measurements or navigation-related structures, may also be used for underwater radiometric 
measurements. The essential measurement equation and checklist of elements to be included in the 
uncertainty budget remain the same, although measurement uncertainties associated with 
superstructure shading will need to be very carefully assessed and will generally be much more 
significant.  

Fixed-depth measurements may also be made from ships, e.g., when using radiometers with too 
slow a response time for fast vertical profiling. Again, the essential measurement equation and 
checklist of elements to be included in the uncertainty budget remain the same, although 
measurement uncertainties associated with ship shading/reflection will need to be very carefully 
assessed and will generally be much more significant unless the radiometers are somehow deployed 
at a sufficient distance from the ship.  

At the time of writing, there are no known cases of multiple fixed-depth radiometric validation 
measurements being made from a horizontally moving platform. In general, horizontally moving 
platforms [24] (BioArgo, PROVAL, HARPOONS/Waveglider – see disclaimer at end before 
references) can also move vertically and so use a measurement technique based on high vertical 
resolution profiling, as described in Section 3.  

The tethered attenuation chain colour sensors (TACCS) [55] is a variant on the fixed-depth 
measurement, where a single underwater 𝐿  measurement, made at 0.5 m depth, is supplemented 
by a vertical chain of four downwelling irradiance sensors measuring 𝐸 (𝑧) at multiple depths, in 
addition to the usual above-water 𝐸 measurement. The diffuse attenuation coefficient, 𝐾 , that is 
derived from these 𝐸 (𝑧) measurements is then used as an approximation of the 𝐾 , that is needed 
to extrapolate 𝐿 (−0.5 m) to 𝐿 (0 ). In one implementation [12] the 𝐸 (𝑧) measurements are 
made at a lower spectral resolution that the 𝐿  measurements, and 𝐾  must, therefore, be 
interpolated/extrapolated spectrally. In other respects this variant on the fixed-depth underwater 
radiometry method has the same sources of uncertainty as listed in Section 2.2, except that further 
uncertainties must be assessed relating to the modelling of 𝐾  from 𝐾 , and the spectral 
interpolation/extrapolation of 𝐾 . 

In some implementations a single measurement of upwelling radiance is made close to the air–
water interface [56]. The 𝐾  required to extrapolate to the surface is then not measured but is either 
assumed zero or estimated using a model which takes the 𝐿  spectrum as input (potentially 
repeated iteratively), giving a measurement uncertainty in both cases. In the optical floating system 
[57], measurements were made within 2 cm of the surface in very calm conditions. Vertical 
extrapolation of single depth near-surface measurements are discussed in Section 3E of [35]. 

3. Underwater Radiometry—Vertical Profiles 

Water-leaving radiance can also be measured using underwater radiometry based on vertical 
profiling—see Figure 4. This method has frequently been used in supervised deployments from ships 
[58] and can also be made from fixed platforms [43]. Theoretically, vertical profiling from a fixed 
platform could also be automated and unsupervised, although in practice long-term deployments of 
radiometers with moving underwater parts are vulnerable to mechanical failures. As an alternative, 
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unsupervised vertical profiles can be carried out from horizontally drifting platforms or “floats” 
[59,60], as further described in Section 3.3. 

The first vertical profile radiometric measurements were generally made from winches attached 
to ships [61]. However, it is clearly important to avoid as far as possible optical (shadow/reflection) 
[62] and hydrographic perturbations (ship wake, ship hull and propeller-induced mixing, bow wave, 
etc.) from the ship as well as vertical motion of optical sensors due to ship motion. It has been 
recommended to make measurements from the stern of a ship with the sun’s relative bearing aft of 
the beam at a minimum distance of 1.5 𝐾⁄  from the ship or at greater minimum distance when 
deploying off the beam of a large vessel—see Section 2.2, p8 of [63]. 

A popular method for getting radiometers away from ship perturbations is to float radiometers 
away a few tens of metres and then profile vertically using a specially-designed rocket-shaped 
free-fall platform [64]. More recently a new “kite” free-fall design allows slower profiling, closer to 
the water surface [54]. Remotely operated vehicles can also be used [65]. 

In view of such improvements in deployment hardware that have become commercially 
available over the last 15 years it is likely that fiducial reference measurements will generally not be 
made from shipborne winch deployments, although this is not formally precluded provided that the 
measurement is supported by a careful uncertainty analysis covering all perturbations specific to the 
ship/deployment method/water type combination, including, for example, measurements made at 
different distances from the ship and/or 3D optical model studies. 

Vertical profiles can also be made from offshore structures, including fixed platforms, e.g., the 
WISPER system on the Aqua Alta Oceanographic Tower (AAOT) [43], or moored buoys with a 
vertical wire-mounted package. These structures have the advantage over shipborne winches of 
reduced tilt of radiometers and reduced hydrodynamic perturbations, although optical perturbations 
still need to be evaluated, e.g., by measurements made at different distances from the platform [66] 
and/or 3D optical model studies [67].  

 
Figure 4. Schematic of underwater vertical profile measurements. This sketch shows deployment 
typical of a free-fall radiometer tethered to a ship, although the method is generic and does not need 
to be ship-tethered, e.g., could be tethered to a fixed offshore platform or moored buoy, or could be 
untethered and horizontally drifting, while profiling. 

3.1. Measurement Equation 



Remote Sens. 2019, 11, 2198 13 of 37 

 

The fundamental measurement equation is similar to that used for fixed-depth measurements, 
except that measurements are now available for a range of depths 𝑧 ≤ 𝑧 ≤ 𝑧  for estimation of the 
vertical variation of 𝐿 (𝑧). 

By definition of 𝐾 , the diffuse attenuation coefficient for 𝐿 : 𝐿 (𝑧, 𝑡 ) = 𝐿 (0 , 𝑡 )𝑒 ( )  (7) 

where 𝑧 is positive underwater and increases with depth beneath the surface (but retaining the 
notation 0  for radiance just beneath the water surface) and 𝑡  is the time to which measurements 
are referred. This gives, after natural logarithm transformation and reorganisation: 

ln 𝐿 (𝑧, 𝑡 ) = 𝑙𝑛 𝐿 (0 , 𝑡 ) − 𝐾 (𝑧 )𝑑𝑧  (8) 

If it is assumed that 𝐾  is constant with depth over the depth range of measurements and up 
to the water surface, then this simplifies to: ln 𝐿 (𝑧, 𝑡 ) = 𝑙𝑛 𝐿 (0 , 𝑡 ) − 𝐾 𝑧 (9) 𝐿 (0 , 𝑡 )  is then obtained from vertical profile measurements as the exponential of the 
intercept of a linear regression of ln 𝐿 (𝑧, 𝑡 )  against 𝑧 over a specified depth range. 

Since measurements at different depths are made at slightly different times, 𝑡, the radiance 
measurements are first corrected for any variations in above-water downwelling irradiance by: 𝐿 (𝑧, 𝑡 ) = 𝐿 (𝑧, 𝑡) 𝐸 (𝑡 )𝐸 (𝑡)  (10) 

Finally, the water-leaving radiance is obtained from 𝐿 (0 , 𝑡 ) by propagating the latter across 
the water-air interface as in Equation (6). 

A number of deployment and data-processing factors influence the quality of 𝐿 (0 , 𝑡 ) derived from measurements of 𝐿 (𝑧, 𝑡): 
• Measurements should be made as close as possible to the air–water interface to minimise the 

uncertainties associated with extrapolation from depth, particularly if there are vertical 
gradients of inherent optical properties or for wavelengths/waters with high vertical 
attenuation. Very near-surface measurements are complicated by waves, which affect 
radiometer tilt and vertical positioning as well as the radiance field itself (focusing/defocusing). 
To deal with this, new profiling platforms have been designed for very slow and stable sampling 
close to the surface [54]. 

• Sufficient measurements are needed for each depth (interval) to ensure that wave focusing and 
defocusing effects can be removed, implying that profiling speed should be sufficiently slow, 
adding to the time required to make a cast, a practical consideration, and the possibility of 
temporal variation of illumination conditions, a data quality consideration. 

• The vertical profiling speed should be matched to the acquisition rate of the radiometers to 
ensure that the depth 𝑧 of each measurement can be determined with sufficient accuracy. 

• The depth range 𝑧 ≤ 𝑧 ≤ 𝑧  chosen for data processing is “the key element in extracting 
accurate subsurface data from in-water profiles” [68]. 𝑧  should be chosen sufficiently large to 
avoid problems of near-surface tilt, wave focusing/defocusing and bubbles, but sufficiently 
small to limit uncertainties associated with extrapolation to the surface, particularly for high 
attenuation waters/wavelengths. Any depth interval with significant ship/superstructure 
shadowing must also be avoided. In practice, the choice of depth range is generally made 
subjectively [11] because of the difficulty to automate such thinking. 

• The depth range 𝑧 ≤ 𝑧 ≤ 𝑧  used in data processing can be wavelength-dependent (unlike for 
the fixed-depth method of Section 2), e.g., using optical depth to set 𝑧  differently at each 
wavelength. 



Remote Sens. 2019, 11, 2198 14 of 37 

 

• Different mathematical methods used to perform the regression analysis for Equation (9) and 
different methods for filtering outliers [69] may give quite different results. Such considerations 
were analysed in detail in the Round Robin experiments documented by [11]. 

• For measurements with significant temporal variability of 𝐸 (𝑡), some time filtering of 𝐸 (𝑡) 
may be needed before application of Equation (10). For example, 𝐸 (𝑡 ) may be chosen as the 
median of 𝐸 (𝑡)  over the measurement interval or, for ship-induced periodic variability, 𝐸 (𝑡) may be first linearly fitted as function of 𝑡. 
For profiling systems where the upcast is made by applying tension to a wire, only downcast 

(“free-fall”) data is used to avoid irregular motion and high tilt. 

3.2. Protocol-Dependent Sources of Uncertainty 

The protocol-related sources of uncertainty are described here for the case of a profiling system 
that is supposed to be fixed, or almost fixed, in horizontal space, e.g., tethered to a ship or an offshore 
platform. Additional considerations to account for significant horizontal movements, e.g., from glider 
platforms, are summarised in Section 3.3.  

3.2.1. Non-Exponential Variation of Upwelling Radiance with Depth 

The vertical variation of upwelling radiance between the highest measurement depth and the air–
water interface should be known 

The essential assumption of exponential variation of 𝐿 (𝑧) from the measurement depth range 𝑧 ≤ 𝑧 ≤ 𝑧  to just beneath the air–water interface is clearly an approximation of reality. This 
assumption will cause uncertainties in conditions of near-surface optical stratification, inelastic 
scattering (Raman, fluorescence) and variability of the angular distribution of upwelling radiance, as 
already described in Section 2.2.1 for fixed-depth radiometry.  

The uncertainty associated with non-exponential variation of 𝐿 (𝑧) can be assessed for the 
measurement range 𝑧 ≤ 𝑧 ≤ 𝑧  by considering the goodness-of-fit of Equation (8), after suitable 
filtering of temporal variability and taking account of realistic uncertainties. For 0 ≤ 𝑧 ≤ 𝑧 , between 
the measurement range and the surface, potential non-exponential variation of 𝐿 (𝑧)  can be 
assessed by model studies [45]. If this non-exponential variation is already considered in the fitting 
methodology, then the uncertainty is reduced to the residual uncertainty associated with the 
difference between the true non-exponential variation of 𝐿 (𝑧) and the estimated non-exponential 
variation. 

Clearly 𝑧  should be kept as shallow as possible, within constraints of deployment, tilt 
contamination and temporal variability, particularly if there may be near-surface stratification of the 
water column.  

3.2.2. Tilt Effects 

The radiance sensor should be deployed vertically 
Non-verticality of radiometers, e.g., caused by wave-tilting of free-fall platforms or ship 

winch-deployed frames, gives uncertainty in the measurements of 𝐿 (𝑧, 𝑡)  because of the 
anisotropic nature of upwelling light fields. It is, therefore, necessary to measure the tilt of 
radiometers using fast response inclinometers and perform appropriate filtering of non-vertical data 
and/or averaging of data to reduce tilt effects [69].  

The uncertainty associated with tilt effects can be estimated by reprocessing of oversampled 
vertical profile measurements with different thresholds for removal of non-vertical data and by 3D 
optical model simulations.  

The impact of tilt on 𝐸  measurements is discussed in [5].  
Obviously, minimisation of tilt should be a consideration in the design of deployment hardware. 

Vertical profiles carried out from fixed platforms suffer less from such tilt effects. The 
“rocket-shaped” free fall platforms may suffer from high tilt, particularly in near-surface waters and 
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high wave conditions. The new designs of ”kite-shaped“ profilers [70] and autonomous profiling 
floats [60] have significantly reduced tilt.  

3.2.3. Self-Shading from Radiometers and/or Superstructure 

The light field should not be perturbed by the measurement radiometers and platform 
In practice, the light field that is being measured is itself perturbed by the presence of solid 

objects such as the radiometers and the superstructure used to mount them, as discussed previously 
in Section 2.2.3 for fixed-depth underwater radiometry. For free-fall radiometer platforms, the 
considerations and corrections discussed in Section 2.2.3 as regards self-shading from the radiometer 
collector and from the mounting frame are relevant also for vertical profiling. For ship-tethered 
free-falling radiometers with an off-centre 𝐿  sensor, azimuthal rotation should be controlled to 
have the 𝐿  sensor on the sunny side. 

Redundant deployment of two sensors at the same depth but on different sides of a profiling 
platform can help identify and remove the data worst affected by platform shading. Knowledge of 
platform azimuth with respect to sun can help assess such effects [60]. 

For ship- or fixed platform-deployed vertical profiling radiometers, superstructure 
shading/reflection effects may be considerable and should be carefully limited, by maximising 
horizontal distance from the structure. Uncertainties should be estimated, e.g., by radiative transfer 
modelling [67,71] and/or by in situ measurements at different distances from the structure. 

3.2.4. Bio-Fouling 

The fore-optics of the radiance sensor should be kept clean 
Supervised underwater radiometric measurements generally do not suffer from bio-fouling 

provided that fore-optics are kept clean between deployments. 
Fouling of the above-water upward-facing 𝐸  sensor is described in [5].  
Unsupervised fixed location vertical profiling measurements are rare but would suffer from 

similar problems to those described in Section 2.2.4 for fixed-depth measurements. 
Horizontally drifting vertical profiling systems (Section 3.3) may arrange to spend most time at 

great depth to minimise bio-fouling [24]. Residual bio-fouling uncertainties (after any biofouling 
correction, e.g. linear drift) can be estimated by comparing pre- and post-deployment calibrations, 
although recovery of horizontally drifting systems is not always possible.  

3.2.5. Depth Measurement 

The depth of radiance measurements should be accurately known 
The measurement equation implies that the depth of measurement is precisely known by a fast 

response and appropriately calibrated pressure sensor located close to the optical sensor. Any 
permanent vertical shift between depth sensor and optical sensor must be corrected and any 
tilt-induced vertical difference between depth and optical measurements must be included in the 
uncertainty estimate. Accurate measurement of depth and associated uncertainties is needed, 
including referencing to surface atmospheric pressure at the moment of profiling (pressure “taring”) 
and temperature-sensitivity of pressure transducers—see Section 5.2. of [54].  

3.2.6. Fresnel Transmittance 

The Fresnel transmittance for upwelling radiance should be accurately calculated 
As in Section 2.2.6.  

3.2.7. Temporal Fluctuations 

Temporal fluctuations associated with surface waves should be removed 
The removal of temporal fluctuations in 𝐿 (𝑧, 𝑡) , e.g., from wave focusing/defocusing is 

complicated for vertical profile measurements because both the light field and the measurement 
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depth, 𝑧, vary with 𝑡, and because measurements may be affected by both natural variability (wave 
effects, water variability) and by deployment-related variability (e.g., tilt and vertical wave motions). 

If all other factors (above-water illumination, water optical properties) are assumed invariant in 
time during the measurements, or suitably corrected, and 𝐿 (𝑧, 𝑡) is assumed to be tilt-free after 
filtering, then natural variability caused by wave effects [72] can be minimised by performing 
sufficient measurements to allow adequate averaging. This can be achieved by slow profiling [54,73] 
or, if this is not possible, by multicasting [68].  

The uncertainty associated with all sources of temporal fluctuations must be estimated, e.g., by 
testing alternative data processing options on oversampled measurements and by 4D optical 
simulations [45]. Uncertainty estimates should be validated, e.g., by measurement intercomparison 
exercises [12].  

3.3. Variants on the Vertical Profiling Underwater Radiometric Method 

Following on from the success of the Argo float network designed for physical oceanography, a 
number of horizontally-drifting vertical-profiling radiometer platforms have been designed for 
long-term unsupervised measurement of optical properties [24,59,60]. Such floats, when suitably 
networked, allow for much better spatial coverage of the oceans (but not shallow seas or inland 
waters). Typically, the radiometer will park at great depth during most of the day and night (to 
reduce bio-fouling) and perform one or more vertical profiles per day (rising at about 4 cm/s to 10 
cm/s or slower), potentially timed to match the acquisition times of specific ocean colour sensors. 
Such systems can also combine vertical profiling with near-surface fixed-depth ”drifting buoy“ 
measurements, thus falling within both Sections 2 and 3 of this document and allowing the vertical 
profile 𝐾  measurements to be used for the near-surface single fixed-depth measurements. 

The essential measurement equation and sources of uncertainty for such measurements are the 
same as for other vertically profiling radiometers. As for all unsupervised measurements, biofouling, 
particularly for the upward-facing 𝐸  measurement [5], may be a significant source of uncertainty, 
especially if the radiometer cannot be recovered for post-deployment calibration. On the other hand, 
the possibility of diving deep limits exposure to biofouling.  

In contrast to vertical profile measurements made from ships or fixed offshore structures, 
drifting floats generally do not have a permanent above-water radiometer for 𝐸 (𝑡) and so there 
will be an additional uncertainty associated with possible time variation of illumination conditions 
during the vertical profile, although the latter may also be reduced by analysis of the 𝐸 (𝑧, 𝑡) profile 
data [74]. 

Floats can also accommodate radiometers on horizontal arms and redundant radiometers to 
provide additional constraints on sensor drift and shading by platform [60]. 

4. Above-Water Radiometry with Sky Radiance Measurement and Skyglint Removal 

4.1. Measurement Equation 

In above-water radiometry one or two radiometers are deployed above water from a ship or 
fixed structure to measure a) upwelling radiance, 𝐿 (0 , 𝜃 , ∆𝜑), at a suitable viewing nadir angle, 𝜃 < 90° , and viewing azimuth angle relative to sun, ∆𝜑 , and b) downward (sky) radiance, 𝐿 (0 , 180° − 𝜃 , ∆𝜑) , in the “mirror” direction which reflects at the air–water interface into the 
water-viewing direction—see Figure 5. 
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Figure 5. Schematic of above-water radiometry with measurement of sky radiance, 𝐿 , and removal 
of skyglint radiance, 𝐿 . Dashed arrows indicate that contributions to the skylight reflected at the air–
water interface come from directions that are not directly measured by the 𝐿  radiance sensor, 
including possible contributions from the direct sunglint direction. 

Then the water-leaving radiance in the water-viewing direction is estimated from the 
measurement equation: 𝐿 ( 𝜃 , ∆𝜑) = 𝐿 (0 , 𝜃 , ∆𝜑) − 𝐿 ( 𝜃 , ∆𝜑) (11) 

where the skyglint radiance,  𝐿 , which cannot be measured directly, is typically estimated as a 
multiple of the downwelling sky radiance, 𝐿 , by 𝐿 (𝜃 , ∆𝜑) = 𝜌 𝐿 (0 , 180° − 𝜃 , ∆𝜑) (12) 

where 𝜌  is a coefficient that represents the fraction of incident skylight that is reflected back 
towards the water-viewing sensor at the air–water interface and is the Fresnel reflectance coefficient 
for a flat water surface, or is called here the “effective Fresnel reflectance coefficient” for a roughened 
water surface. 

The second part of this measurement equation (12), which forms the basis of this protocol, is 
adopted as a pragmatic way of estimating and removing the upwelling radiance that originates from 
reflection at the air–water interface. However, it is well understood that such radiance may originate 
from portions of the sky dome other than the portion that is actually measured, as defined by (180° − 𝜃 , ∆𝜑) and the field of view of the 𝐿  radiometer. 𝐿  may include reflection of direct sun 
glint—see Figures 1 and 2 of [75] and Equation (1) of [76]. This is discussed further in Section 4.2.1. 
In reality, the right hand side of (12) is an approximation of the convolution of sky radiances for the 
full hemisphere with the wave slope statistics, defining the probability of encountering a part of the 
air–water interface that reflects specularly into the direction ( 𝜃 , ∆𝜑), and the Fresnel reflectance 
coefficient for the corresponding incidence angle—see Chapter 4 and Equation (4.3) of [3] or Equation 
(3) of [77] for a complete description. 

In the case of a flat water surface with only specular reflection processes (i.e., no whitecaps or 
other diffuse reflection processes) and with unpolarised downwelling light, and for an infinitesimally 
small sensor field of view, 𝜌  is simply given by the Fresnel reflectance equation and is plotted in 
Figure 6: 

𝜌 ( 𝜃 ) = 12 𝑠𝑖𝑛(𝜃 − 𝜃 )𝑠𝑖𝑛(𝜃 + 𝜃 ) + 𝑡𝑎𝑛(𝜃 − 𝜃 )𝑡𝑎𝑛(𝜃 + 𝜃 )   (13) 
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where 𝜃  is the viewing nadir angle (“above-water incidence angle”) and 𝜃  is the angle of light 
transmitted to below water after refraction:  𝜃 = 180° − 𝑠𝑖𝑛 (𝑠𝑖𝑛𝜃 𝑛⁄ ) (14) 

where 𝑛  is the index of refraction of water with respect to air and is often approximated by the 
value 1.34 but does also vary with salinity, temperature and wavelength [3].  

For nadir-viewing, 𝜃 = 0, and Equation (13) is replaced by: 𝜌 (0) = 𝑛 − 1𝑛 + 1  (15) 

The nadir viewing angle variation of 𝜌  is illustrated for this flat-water surface and for 
modelled wavy water surfaces in Figure 6. 

 
Figure 6. Effective Fresnel reflectance coefficient, 𝜌 , as function of viewing nadir angle, 𝜃 , for the 
flat water case (Fresnel reflectance given by Equation (13)) and for a wind-roughened surface, 
modelled [75] at 10° intervals for λ = 550 nm, 𝜃 = 30°, and various wind speeds, 𝑊, for 𝐿  with 
relative viewing azimuth angles, ∆𝜑 . 

In reality: 
• The water surface is not flat but is a wavy surface [32] implying that a) the portion of sky 

reflected into the water-viewing direction may come from directions other than 𝐿 (0 , 180° −𝜃 , ∆𝜑) [75], and that b) the incidence angle required for calculation of the Fresnel coefficient is 
different from 𝜃 , with spatial variation of the incidence angle within the sensor field of view 
that increases with wave inclination. 

• The downwelling light is not unpolarised, but, particularly for the molecularly scattered 
“Rayleigh” component at 90° scattering angle from the sun, may be strongly polarised [78]. 

• Some radiometers have a field of view that can be quite significant, e.g., >10°, meaning that the 
measurements 𝐿 (0 , 𝜃 , ∆𝜑) and 𝐿 (0 , 180°−𝜃 , ∆𝜑) are weighted averages over a range of 
viewing angles (𝜃 , ∆𝜑) and the model for 𝜌  may need to account for different incidence 
angles even for a flat water surface. 

These considerations are dealt with in detail in the following Sections and their references. 
As regards the classification of methods for measuring 𝐿 , it is suggested here to drop the 

Method1/2/3 above-water radiometry classification used in the NASA Ocean Optics 2003 protocols 
[79] mainly for the 𝐸  measurement and in future classify the above-water 𝐿  measurements 
according to viewing geometry, measuring radiance with: 
• Viewing nadir angle, e.g., 𝜃 = 0° (pointing towards nadir) or 𝜃 = 40° or “other”.  
• Viewing relative azimuth angle to sun for off-nadir measurements, e.g., ∆𝜑 = 90° or ∆𝜑 = 135° 

or “other”. 
and 
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• The method used to estimate skylight reflected at the air–water interface. 
In general nadir-viewing is avoided because of the high uncertainties associated with skyglint 

removal in geometries close to sunglint [75] and because of difficulties in avoiding optical 
perturbation from the ship/platform. However, there may be situations where nadir-viewing can be 
acceptable (e.g., mirror-flat lakes, sensors deployed well above water surface from an optically small 
structure, high sun zenith angle) provided that uncertainties are careful assessed and validated.  

The measurement of polarized upwelling radiance [80,81] is considered as a variant of the 
above-water 𝐿  method – see Section 4.3 

In view of the quite different measurement uncertainties, the skylight-blocked approach (SBA) 
[76,82] is treated in the separate Section 5.  

4.1.1. Temporal Processing of Radiance Measurements 

Measurement of both sky radiance and water radiance involves time integration for each 
individual measurement and replicate measurements which are subsequently processed to yield a 
single value for 𝐿 (0 , 𝜃 , ∆𝜑)  and 𝐿 (0 , 180° −𝜃 , ∆𝜑)  where the overbar represents the 
multitemporal measurement, typically called “time-average”, although the temporal processing may 
be different from a mean average and will generally involve prior outlier removal or time series based 
quality control. 

The integration time depends on the radiometer concept and the brightness of the target. 
Filter-wheel radiometers generally measure fast, typically at many hertz, whereas 
spectrometer-based systems may be fast, e.g., 8 ms to 32 ms, for bright targets such as the sky, but 
much slower, e.g., integration time of 1 s to 4 s, for darker targets such as water.  

For the sky radiance measurement, 𝐿 (0 , 180°−𝜃 , ∆𝜑) , a small number of replicate 
measurements should be sufficient. If the sky conditions are good (clear blue sky) then 3 to 5 
replicates should be sufficient to establish this and provide a mean average and standard deviation 
for this parameter. If the sky conditions are not good (e.g., scattered clouds and/or partially obscured 
sun) then this will also be immediately apparent from even a low, e.g., 3 to 5, number of replicates 
either in the standard deviation or in the magnitude of 𝐿 𝐸⁄  at 750 nm, which will be much higher 
than that of an ideal sky model, see Web Appendix 1 of [22].  

For the water radiance measurement, 𝐿 (0 , 𝜃 , ∆𝜑) , a much larger number of replicate 
measurements is needed because of the rapid and large temporal variations associated with surface 
gravity waves. These variations include the darkening/brightening effect of large surface gravity 
waves oriented towards/away from the sensor (because of air–water interface reflectance differences 
and/or reflection of brighter/darker portions of the sky) as well as the very bright, small and fast 
sunglint “flashes” from specular reflectance of direct sun at suitably oriented capillary wave facets, 
particularly when viewing at low 𝜃 − 𝜃 , low ∆𝜑 and for high wave amplitudes. The temporal 
processing of 𝐿 (0 , 𝜃 , ∆𝜑)  measurements should also depend on the integration time of each 
measurement and may be linked to the method for estimation of 𝜌 . For example, a temporal 
processing method has been used for a rapidly sampling, small field of view radiometer that retains 
the minimal values of 𝐿 (0 , 𝜃 , ∆𝜑) over a number of replicates and uses a flat sea model for 𝜌  
using the principle that sunglint flashes and brighter waves can be resolved and eliminated by the 
minimum filter [83]. A different approach was suggested [75] for the case effectively of a slowly 
sampling radiometer where the contributions of different wave facets cannot be isolated but are 
effectively averaged in time (and possibly space, depending on the field of view and distance from 
the water surface) for each individual 𝐿 (0 , 𝜃 , ∆𝜑) measurement. In the latter case a quite different 
value of 𝜌  may be required from that of the flat water surface model of Equation (13)—see Figure 
2 of [84]. 

4.2. Protocol-Dependent Sources of Uncertainty 

The protocol-related sources of uncertainty are described in the following subsections.  
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4.2.1. Estimation of Reflected Skylight 

Upwelling radiance from reflection at the air–water interface (skyglint/sunglint) should be 
removed 

The most critical aspect of above-water measurements of 𝐿  lies in the removal of skylight 
reflected at the air–water interface, represented by the coefficient 𝜌  in Equation (11). For waters or 
wavelengths where 𝑅  is low, the right-hand side of (11) can be the difference of two values which 
are much larger than the left hand side. For example, in clear waters in the near infrared, 𝐿  may be 
negligibly small whereas 𝐿 (0 , 𝜃 , ∆𝜑) and 𝜌 𝐿 (0 , 180° − 𝜃 , ∆𝜑) are not. Any uncertainty in 𝜌  
is then greatly amplified when taking the difference. It is important to note that the uncertainty on 𝜌 𝐿 (0 , 180°−𝜃 , ∆𝜑) is an absolute uncertainty for 𝐿  [22] that is unrelated to the value of 𝐿  
itself and so becomes more important in relative terms as 𝐿  decreases. This is in contrast to most 
radiometer-related uncertainties (calibration, 𝐸  cosine response, radiometer thermal sensitivity, 
etc.) which are relative uncertainties that can be expressed as a percentage of the desired parameter, 𝐿  or 𝑅 . 

In view of the importance of estimating 𝐿  or the product 𝜌 𝐿 (0 , 180° − 𝜃 , ∆𝜑) there is quite 
large diversity of approaches. In the crudest approach, 𝜌  is simply taken from the flat sea Equation 
(13) and therefore generates large uncertainties that may be strongly positively biased for 𝐿 . For 
waters with low red or near infrared reflectance, a further “residual” correction may be applied [85], 
assuming that 𝐿 = 0 for a suitable wavelength, 𝜆 , and that 𝐿 (𝜃 , ∆𝜑) has spectral variation given 
by 𝐿 (0 , 180° − 𝜃 , ∆𝜑). 

Such an approach may also be used in highly absorbing waters at both ultraviolet and near 
infrared wavelengths to provide two fixed points at each extreme of the spectrum for a full spectrum 
construction of 𝐿 (𝜃 , ∆𝜑) [86]. 

For brighter waters, a wavelength 𝜆  with negligible 𝐿  may not exist and, in an approach 
analogous to turbid water aerosol correction algorithms, a “turbid water” residual correction was 
proposed [87] based on measurements at 715 nm and 735 nm. This approach was generalised for any 
pair of near infrared wavelength [88], but was suggested for use in quality control/uncertainty 
estimation rather than data correction.  

Scalar radiative transfer simulations were carried out [75] to establish 𝜌  as function of sun and 
viewing geometry (𝜃 , 𝜃 , ∆𝜑 ) and wind speed at a height of 10 m above the water, 𝑊, assuming a 
Cox-Munk relationship [89] between surface wave field and wind speed. In general, the directionality 
of the wave field (in particular the azimuth angle between wind direction and sun) is not accounted 
for when applying such corrections, although variability with wind direction has been observed [89] 
and this directionality may affect data [40]. In the case of fetch-limited inland waters 𝑊 will typically 
be set to zero or a small value, since the Cox–Munk relationship will not apply. Similarly in overcast 
conditions (not very relevant for satellite validation) the dependence on surface wave field and/or 𝑊 
is also less strong and a constant value of 𝜌 = 0.028 has been proposed [75]. The table of values 
calculated for 𝜌  as function of (𝜃 , 𝜃 , ∆𝜑 ) and 𝑊 is provided for download at [90], together with 
an updated table including polarisation effects [91], as described below. 

It has been noted [76] that, since contributions to 𝐿 ( 𝜃 , ∆𝜑) arise from different portions of the 
sky (including direct sun) when the surface is not perfectly flat, these will have different spectral 
shapes from the 𝐿 (0 , 180° − 𝜃 , ∆𝜑)  that is measured. This effect is not accounted for in the 
simulations of [75] where the model assumes the same colour of the sky in all directions.  

Sky radiance measured over small inland waters may include a component of light which has 
been scattered by land and then further backscattered in the atmosphere, giving, near vegetated land, 
a stronger near infrared contribution than typical oceanic skies [92]. 

For measurements made in inland waters very close to trees or in the vicinity of steep mountains, 
the sky radiance measurement may even include directly light from objects that are not sky—such 
problems could be mitigated by choosing the most favourable of the two possible relative azimuth 
angles (left or right of sun) although it will clearly be very challenging to make good measurements 
in such circumstances of highly anisotropic downwelling “skydome” hemisphere. 
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It has been shown that 𝜌  is, in reality, significantly lower than that in the simulations of [75] 
because the downward radiance is not unpolarized [93]. This effect is particularly strong when 
viewing near the Brewster angle of about 53°. Further simulations do take account of such 
polarisation effects [91,94] and the impact of aerosols, showing the further dependency of 𝜌  on 
aerosol optical thickness [95]. Other simulations take account of polarisation effects and also 
demonstrate that quite different mean surface slopes and hence quite different surface reflectance 
factors can arise from a single wind speed [40]. 

In one study, also taking account of polarization, the sunglint and skyglint components of light 
reflected at the air–water interface are treated separately [77]. In that formulation, the reflected light 
is still modelled as a multiple of the measured incident skylight in the sky-viewing direction, 𝐿 (0 , 180° − 𝜃 , ∆𝜑), but the air–water interface reflection coefficient, 𝜌 , is split into two reflection 
coefficients, 𝜌 (𝜆), and 𝜌 (𝜆) representing respectively the sunglint and skyglint contributions. 
Although these coefficients are considered as “spectrally varying” in that paper it is noted that this 
“spectral variation” is a model to correct for the fact that the 𝐿 (0 , 180° − 𝜃 , ∆𝜑) measurement is 
not representative of the spectral variation of sky radiances from all portions of sky (including direct 
sun) that are reflected towards the water-viewing sensor. The true spectral variation of the flat sea 
Fresnel coefficient, because of salinity and temperature related variation of the refractive index of 
water, is less significant (but also accounted for in that study). Using this decomposition of 𝐿 ( 𝜃 , ∆𝜑) into skyglint and direct sunglint components [77], the spectral variation of the latter 
follows the spectral radiance of the direct sun radiance, which is clearly different from the measured 
sky radiance 𝐿 (0 , 180° −  𝜃 , ∆𝜑) and may be closer in spectral variation to that of the measured 
downwelling irradiance, 𝐸 . 

The effective air–water interface reflection coefficient, 𝜌 , has been modelled for a continuum of 
viewing nadir and azimuth angles, sun zenith angles and wind speeds [84]. The impact of aerosol 
optical thickness on 𝜌  was demonstrated and it was recommended that above-water radiometric 
measurements be accompanied by measurements of aerosol optical thickness. 

In a way that is analogous with the development of full spectrum coupled ocean-atmosphere 
modelling in satellite data atmospheric correction algorithms, more complex schemes have been 
proposed for taking account of the expected spectral shapes of 𝐿  and 𝜌 𝐿 (0 , 180°−𝜃 , ∆𝜑). e.g., 
[96].  

For hyperspectral measurements it has been proposed [97] to use the fact that 𝑅  can be 
expected to be spectrally quite smooth whereas both 𝐿 (0 , 𝜃 , ∆𝜑) and 𝜌 𝐿 (0 , 180° − 𝜃 , ∆𝜑) are 
affected by atmospheric absorption features. Thus 𝜌  can be constrained or estimated as the value 
that will yield a spectrally smooth 𝑅 . 

While there have been many recent and diverse developments for the removal of skyglint in 
data post-processing, the acquisition geometry of 𝜃 = 40°  viewing angle for the water and 180° − 𝜃 = 140° viewing angle for the sky observations, as proposed in [75] and endorsed by [79], 
remains a very robust and practical approach: viewing angles below 40° are more often associated 
with the impact of sunglint effects [84], while at viewing angles larger than 40° the reflectance 
coefficient becomes more sensitive to the small changes of the viewing angle as clearly follows from 
Figure 6. In addition, for moderate wind speeds the impact of aerosol optical thickness and 
polarization on the reflectance coefficient is typically smaller than for other viewing angles [84]. The 
azimuth angle for the water and sky observations should be closely monitored and should be the 
same for both measurements because of the significant azimuthal gradient of the sky radiance [84]. 

Using a hyperspectral imaging camera, relative uncertainties for 𝐿  have been estimated 
arising from 𝐿  correction for the spectral range 450 nm to 900 nm and for viewing angles 20° to 60° 
as a function of wind speed [84]. These uncertainties are most critical at blue wavelengths for waters 
with low blue reflectance, typical of coastal waters, where 𝐿 𝐿⁄  is greatest. That study [84] also 
showed that both water and sky radiance measurements are not sensitive to the field of view (FOV) 
of the optics for FOV between 4° and 31.2° for measurements made at between 6 m and 8 m above 
water level with integration time 20 ms to 50 ms for a wind speed of 5.6 m/s. 
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If 𝐿  and 𝐿  are measured with different radiometers, e.g., as in the implementation of [22], 
then the differences between the radiometer sensitivities as a function of wavelength will add some 
measurement uncertainty for the spectrally-binned 𝐿 —this is often visible in hyperspectral 
measurements where narrow and strong atmospheric absorption features, such as oxygen absorption 
near 762 nm, lead to “blips” in 𝐿  or 𝑅  spectra. 

In view of the wide diversity of approaches for estimation of 𝜌  [98] and continued research 
into methodological improvements, the present document does not intend to prescribe a single 
protocol for estimating 𝐿 ( 𝜃 , ∆𝜑) or 𝜌  in FRM measurements. In fact, for most data acquisition 
protocols, different methods for estimating 𝜌  or 𝐿 ( 𝜃 , ∆𝜑) can be applied in post-processing and 
could be applied to historical data. Rather the approach of the current document is merely to insist 
that the uncertainties of any approach be thoroughly estimated and validated. 

One method for estimation of uncertainties associated with 𝐿 ( 𝜃 , ∆𝜑) removal is to consider 
the spectral consistency of 𝑅 ( 𝜃 , ∆𝜑) in the near infrared. For clear waters and at sufficiently long 
wavelength 𝑅  can be assumed zero and any offset in measurements can be used as an estimator of 
total measurement uncertainty, provided this information has not already been used to perform a 
“residual correction” of data—this approach was suggested by [99], although in their study the 
uncertainty was expected to come more from ship perturbations (Section 4.2.3) than from 𝐿 (𝜃 , ∆𝜑) 
removal. The approach was extended [88] for moderately turbid waters, where 𝑅  is non-zero in 
the near infrared, but adopts a spectral shape determined primarily by the pure water absorption 
coefficient [22].  

4.2.2. Tilt and Heading Effects 

Radiance measurements should be made at exactly the prescribed viewing nadir and relative 
azimuth angles 

The uncertainty in the pointing angle of radiometers used for measuring both 𝐿 (0 , 𝜃 , ∆𝜑) 
and 𝐿 (0 , 180° − 𝜃 , ∆𝜑) must be propagated through to give an uncertainty for 𝐿 ( 𝜃 , ∆𝜑). 

When operating from boats inaccuracies in pointing angle may arise from a) the initial setup and 
levelling of radiometers for the “at rest” balancing of the boat, and any resetting that is required 
during a campaign, e.g., because of changes in boat balance (ballasting, fuel and water tanks, 
deployment of equipment overboard by crane, etc.) and; b) pitch and roll, which may easily reach 10° 
or more in heavy sea states or for small boats. Above-water radiometry from most fixed platforms is 
not significantly affected by wave- or wind-induced tilt and angular accuracy of <1° is easily achieved 
with a rigid structure, but can be exceeded for a flexible mast. 

The impact of tilt can be estimated and reduced by: a) measuring the inclination of the 
radiometers or the mounting platform/ship with a fast response well-calibrated inclinometer and 
removing all data where tilt exceeds a user-defined threshold; and b) calculating the mean average 
and standard deviation of a time series of replicate measurements. 

For the 𝐿 (0 , 𝜃 , ∆𝜑)  measurement, tilt, particularly any setup angle error, will affect the 
effective angle of data for 𝐿 (𝜃 , ∆𝜑) and hence any bidirectional corrections that may subsequently 
be applied to reproject data to nadir-viewing or to the satellite-viewing geometry. However, the 
related uncertainties will generally be low provided that data are sufficiently tilt-thresholded before 
processing. Tilt will also affect the effective incidence angle for calculation of the effective Fresnel 
reflectance, particularly for high wave conditions and when viewing at high viewing nadir angle 
such as >40°. 

While pointing away from the sun azimuth minimizes the azimuthal variation of effective 
Fresnel reflectance, the deviation between nominal ∆φ and actual ∆φ provides an additional source 
of uncertainty. The actual ∆φ should therefore be measured, typically using a magnetic compass and 
modelled sun azimuth angle for shipborne measurements. For unsupervised deployments a 
reference azimuth is generally set during installation by sun-pointing and is regularly checked.  

For the 𝐿 (0 , 180° − 𝜃 , ∆𝜑) measurement, tilt will result in a different portion of the sky being 
measured from the sky that is effectively reflected by the air–water interface into the water-viewing 
sensor.  
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4.2.3. Self-Shading from Radiometers and/or Superstructure 

The light field should not be perturbed by the measurement platform 
Measurements from boat- and platform-mounted water-viewing radiometers may be 

contaminated by optical perturbations from the boat/platform. These perturbations are most 
pronounced when the water volume being measured is in some way shadowed from direct sun, 
although shadowing of downwelling skylight and reflection of downwelling light from structures 
also contribute to optical perturbations. 

For the above-water optical perturbations to 𝐸 , one can imagine operating a fish-eye camera 
pointing vertically upwards from the water surface at the centre of the radiometer field of view—see 
Figures 2 and 3 of [5] except that, in the context of impact on the 𝐿  measurement, the location for 
such photos is the water surface target. Anything in the hemispherical picture that is not the sun/sky 
represents an optical perturbation, that will be wavelength-dependent and may be either positive or 
negative, e.g., blue sky replaced by part of the ship. This effect is most important for objects close to 
zenith because of their greater contribution to the cosine-weighted integral of 𝐸  (see Equation 2 of 
[5]), for objects close to the sun where sky radiance is greatest and for objects which occupy a large 
solid angle of the sky.  

The ship/platform may also throw a shadow (or reflections) that affect the underwater light field 
and hence 𝐿 (𝜃 , ∆𝜑) , particularly in clear waters and/or for wavelengths with low diffuse 
attenuation coefficient.  
Optical perturbations from the ship/platform are generally reduced in the system design by: 
1. Mounting the water-viewing radiometer as high as possible, e.g., on a telescopic mast [100,101]; 
2. Choosing the radiometer mounting position to limit optical perturbations, e.g., at the prow of a 

ship, facing forward [22,102] or at a corner of a fixed offshore platform [103];  
3. Viewing at a moderate nadir angle, because low nadir angle viewing generally implies that the 

ship/platform will be closer to the water target and will occupy a larger solid angle of the sky as 
seen from the water surface (but too large nadir angle will increase uncertainties associated with 
effective Fresnel reflectance calculation); and 

4. Considering the viewing azimuth angle as a compromise between avoiding sunglint (need high ∆𝜑—see Section 4.2.1) and avoiding direct shadow (need not too high ∆𝜑 ). 
Finally, the ship/platform may also affect the surface roughness and effective 𝜌  described in Section 
4.2.1 by wind-shadowing so that the measured wind speed no longer represents the wave field 
producing sunglint/skyglint. 

Optical perturbations caused by the radiometers themselves are generally not a problem unless 
the radiometers are operated very close to the water surface, e.g., within 1 m.  

Uncertainties associated with optical perturbations can be assessed by 3D optical simulations 
[67], by making measurements at different distances from the ship/platform and/or by very high 
resolution satellite/aircraft/drone measurements.  

4.2.4. Bio-Fouling and other Fore-Optics Contamination 

The fore-optics of the radiance sensor(s) should be kept clean 
In addition to sensitivity changes inherent to the radiometer, modification of the transmissivity 

of the fore-optics can occur because of deposition of atmospheric particles and/or water (rain, salty 
sea spray) and/or bio-fouling from animals (spiders, insects, birds, etc.) on the fore-optics or 
associated collimator tubes. 

Such contamination can be easily avoided by regular checking and cleaning of the fore-optics in 
supervised deployments, but may be problematic for long-term unsupervised deployments, 
particularly for the upward facing 𝐿 (0 , 𝜃 , ∆𝜑) sensor. Sea spray can leave a salty deposit on 
fore-optics and can be reduced by mounting sensors sufficiently high above the sea surface. 

For long-term unsupervised deployments fore-optics contamination can be significantly 
reduced by parking the radiometer facing downwards (e.g., CIMEL/Seaprism approach) when not 
measuring and during periods of rain, as detected by a humidity sensor. Collimator tubes or other 
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concave shielding of the fore-optics may also help reduce fore-optics contamination, e.g., from sea 
spray, but may provide attractive shelter to spiders and insects. 

The uncertainty related to bio-fouling and other foreoptics contamination can be estimated by 
comparing post-deployment calibrations before and after cleaning.  

4.2.5. Temporal Fluctuations 

Temporal fluctuations associated with surface waves should be removed 
Measurements are averaged over a certain interval of time to remove as far as possible the 

temporal variations associated with surface gravity waves—see Section 4.2.1. Variations in 
illumination conditions, e.g., clouds/haze passing near the sun, or in cloudiness of the portion of sky 
that reflects into the water-viewing sensor, can be detected in time series of replicates and the 
associated data can be rejected if a user-defined threshold of variation is reached. 

If 𝐿 (0 , 180° − 𝜃 , ∆𝜑) and 𝐿 (0 , 𝜃 , ∆𝜑)  are measured with the same radiometer then 
illumination changes between these two measurement times should be monitored, e.g., via 
continuous 𝐸 (0 ) measurements. 

Uncertainties associated with any temporal fluctuations of illumination conditions (both the 
direct sun and the sky in the sky-viewing direction) that pass the time series quality control can be 
quantified by simple model simulations.  

4.2.6. Bidirectional Effects 

The viewing geometry (nadir and relative azimuth angle to sun) should be accurately known 
The difference between satellite and in situ viewing directions and associated BRDF corrections, 

as mentioned in Section 1.2 is outside the scope of the present study and warrants a study of its own, 
although it is noted here that off-nadir angles, e.g., 𝜃 = 40°, are generally used in above-water 
radiometry. BRDF corrections from off-nadir to nadir-viewing geometries are more significant in 
optically shallow waters.  

4.2.7. Atmospheric Scattering between Water and Sensor 

The atmospheric path length for scattering between water and sensor should be negligible 
Atmospheric scattering (or absorption) can occur between the water surface and the radiance 

sensor introducing an error in the 𝐿  measurement. In practice this is often ignored because the 
deployment height is typically only a few metres. However, for completeness in the FRM context and 
particularly when deployments are made from high masts (to avoid superstructure and shading 
effects), the uncertainty associated with atmospheric scattering between water and sensor should be 
estimated. 

4.3. Variants on the Above-Water Radiometric Method 

In addition to the various viewing geometries that have been used for above-water radiometry, 
one important protocol variant was introduced [80] and further developed [81], for the 
SIMBAD/SIMBADA radiometers with a vertically polarising filter placed as fore-optics and a 
measurement protocol with 𝜃 = 45° and ∆𝜑 = 135°. This design allows dramatic reduction of the 
magnitude of 𝐿 ( 𝜃 , ∆𝜑) and hence associated uncertainties, provided that the polarising filter can 
be adequately calibrated and the residual polarised component of reflected skyglint can be 
adequately modelled.  

Above-water measurements could also be made for multiple nadir and azimuth angles, e.g., 
from a robotic pointing system or from an imaging camera system [104].  

It is entirely feasible to combine both polarised and unpolarised measurements of 𝐿 (0 , 𝜃 , ∆𝜑), 
e.g., in a filter-wheel radiometer or by mounting in parallel radiometers with and without polarising 
filters [105]. The main component of skyglint can be effectively removed for a range of viewing angles 
by use of a vertical polarizer [106]. However, small background noise still exists because of different 
orientations of the wave facets and the sunglint is not well removed by a vertical polariser because 
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polarization is in a different plane. The partial polarization of 𝐿  itself needs to be considered in 
such techniques.  

Theoretically above-water radiometric measurements could be made for satellite validation 
from low altitude airborne platforms such as tethered balloons or drones, which would have 
advantages in terms of reducing optical perturbation by increasing distance from the water surface. 
However, in practice, the control of viewing geometry (platform stability) and logistical 
considerations (power supply, cleaning, maintenance) seems to preclude significant use of such 
platforms for unsupervised measurements at present. 

5. Skylight-Blocked Approach 

5.1. Measurement Equation 

In view of the potentially large uncertainties which may arise from the skyglint correction of 
above-water radiometry (Section 4.2.1), the SBA was suggested [76,107,108] and further developed 
[82]. In this approach the upwelling radiance measurement is made with a radiance sensor to which 
an extension cone or cylinder is added so that the tip of the cone/cylinder lies fully beneath the air–
water interface but the sensor fore-optics remains in air—see Figure 7. A photograph of an actual 
deployment can be found in Figure 2 of [82]. 

 
Figure 7. Schematic of above-water radiometry with skylight-blocked approach. Note that the 
radiometer fore-optics are in air, but the radiometer body is extended with a cone or shield (black 
lines) that extends below the water surface, ensuring blocking of skylight reflection. 

With this approach there should be no skyglint reflected at the air–water interface and the 
measurement equation is simply given by: 𝐿 ( 𝜃 , ∆𝜑) = 𝐿 (0 , 𝜃 , ∆𝜑) (16) 

This measurement can be made for the nadir-viewing direction, 𝜃 = 0, typically from a buoy 
which is floated away from a ship or tethered to a mooring, but other configurations are possible (see 
Section 5.3). 

Measurement of water radiance involves time integration for each individual measurement and 
replicate measurements which are subsequently processed to yield a single value for 𝐿 (0 , 𝜃 , ∆𝜑) 
where the overbar denotes the multitemporal measurement, typically called “time-average”, 
although the temporal processing may be different from a mean average. 

The integration time depends on the radiometer design and the brightness of the target. 
Filter-wheel radiometers generally measure fast, typically at many hertz, whereas 
spectrometer-based systems may be much slower, e.g., integration time of 1 s to 4 s, for dark targets 
such as water.  

5.2. Protocol-Dependent Sources of Uncertainty 

The protocol-related sources of uncertainty are described in the following subsections.  
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5.2.1. Self-Shading from Radiometers and/or Superstructure 

The underwater light field should not be perturbed by the measurement radiometer, sky-blocking 
cone and platform 

The skylight blocking cone/shield is designed to fully block all downward radiance at the air–
water interface so that the reflection of skylight from the air–water interface is zero with zero 
uncertainty provided that there are no internal reflections within the cone and from the sensor 
fore-optics. However, in practice the cone/shield and radiometer will also block sun and skylight 
illuminating the water volume that is being measured. This (spectrally-dependent) uncertainty, also 
called self-shading, needs to be evaluated and will depend on: 
• Diameter of the cone/shield (preferably small); 
• Angular variation of downwelling radiance (preferably high sun zenith angle); 
• Inherent optical properties of the water (preferably low absorption); 
• Distance of the cone beneath the air–water interface (preferably very small compared to a 

vertical attenuation length scale). 
The first three parameters are similar as for the process of radiometer self-shading for 

underwater radiometry [47]. Minimisation of the distance of the cone beneath the air–water interface 
depends on surface wave height and stability of the deployment platform and should be measured 
or estimated. Outliers caused by waves can be removed during data processing.  

The uncertainties associated with self-shading using this protocol have been estimated by [109], 
who propose also a scheme for correcting for these effects. 

Further contamination of measurements may arise from optical perturbations from the 
deployment platform, typically a buoy floated away from a ship to a distance sufficient to ensure no 
optical contamination from the ship itself. Clearly the water volume being measured should not be 
in the direct sun shadow of any deployment platform (buoy). This can be achieved by duplicate 
radiometers on opposite sides of a buoy, one of which will always be outside the direct sun shadow. 
Measurement of the azimuthal rotation of the deployment structure with respect to sun will facilitate 
estimation of the uncertainty relating to optical contaminations. Figure 4 of [109] shows, from 3D 
Monte Carlo simulations of the structure, that azimuthal dependence of self-shading is low provided 
that direct sun shadow is avoided. 

Even if outside the direct sun shadow the deployment structure will to some extent modify the 
downwelling radiance field illuminating the water volume. Consequent uncertainties can be 
estimated, as for the other methods (Section 2.2.2), by 3D optical modelling, by high-resolution 
imagery (e.g., from drone-mounted cameras) or by experiments with radiometers held at different 
distance from the deployment structure.  

5.2.2. Tilt Effects 

The radiance sensor should be deployed vertically 
Any variation in the pointing angle of the radiometer (“tilt”) must be considered to give an 

uncertainty for 𝐿  as for fixed-depth underwater measurements—Section 2.2.2.—but using here 
the above-water angular variability of 𝐿 . Typically a tilt threshold will be set for acceptable 
measurements and the associated uncertainty can be assessed from model simulations. 

5.2.3. Bio-Fouling and other Fore-Optics Contamination 

The fore-optics of the radiance sensor should be kept clean 
Since this protocol involves a downward-facing sensor with shadowed fore-optics, bio-fouling 

from algae is not expected to be a major problem, even for unsupervised deployment—see also 
Section 2.2.4 for fixed-depth underwater radiometry.  

More problematic may be the possibility of water droplets reaching the fore-optics, which is 
supposed to be in air. For seaborne deployments, salt water reaching the fore-optics may leave a salty 
deposit. This can be particularly problematic in high sea state, but can be limited by choice of a stable 
deployment platform [82] and a sufficiently long and air-tight cone/shield (subject to radiometer field 
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of view constraints). In addition, for supervised deployments, a small brush can be used to clean the 
fore-optics regularly. 

The uncertainty related to any foreoptics contamination can be estimated by comparing 
post-deployment calibrations before and after cleaning.  

5.2.4. Temporal Fluctuations 

Temporal fluctuations associated with surface waves should be removed 
Measurements are averaged (after quality control) over a certain interval of time to remove as 

far as possible the fast variations associated with natural variability (wave focusing/defocusing—see 
also Section 2.2.7), and with surface gravity waves, which may affect the depth of water in the 
shield/cone (Section 5.2.1).  

Variations in illumination conditions, e.g., clouds/haze passing near the sun, can be detected in 
time series of 𝐿 𝐸⁄  or 𝐸  and the associated data can be rejected if a user-defined threshold of 
variation is reached. Uncertainties associated with any rapid fluctuations of illumination conditions 
that pass the time series quality control can be quantified by simple model simulations.  

5.3. Variants on the Skylight-Blocked Approach 

The SBA protocol could be used with various radiometers, shields/cones and deployment 
methods (buoys, etc.). The preceding subsections are thought to be sufficiently generic to cover these 
variants.  

6. Conclusions 

6.1. Summary of the State of the Art 

This paper reviews the current state of the art of protocols for the measurement of water-leaving 
radiance for validation of satellite remote-sensing data over water in the FRM context. This review 
focusses particularly on protocol-related elements of the measurement uncertainty budget. These 
aspects of the protocol are discussed with reference to documented studies and guidelines are 
provided on how to estimate such uncertainties, e.g., design of experiments and/or model studies. 

Four basic measurement protocols have been identified: 
• Underwater radiometry using fixed-depth measurements (“underwater fixed depths”); 
• Underwater radiometry using vertical profiles (“underwater profiling”); 
• Above-water radiometry with sky radiance measurement and skyglint removal 

(“above-water”); and 
• On-water radiometry with optical blocking of skylight (“skylight-blocked”). 
These protocols are summarized in Table 1 as regards equipment, protocol maturity, automation 
aspects, and challenging waters/wavelengths. 

In this review we have tried to cover a very wide range of potential environmental conditions 
and a rather generic consideration of the four basic protocol families. For example, the MOBY and 
BOUSSOLE systems are obvious models for the underwater fixed-depth method and are both 
operating from floating platforms in deep, oligotrophic “case 1” waters with high performance and 
high cost infrastructure and instrumentation. However, the fixed-depth protocol can be applied in 
very different circumstances such as in very shallow inland waters (with much closer vertical spacing 
of radiometers) or from fixed platforms (with negligible tilt). Similarly, the AERONET-OC system is 
an obvious model for above-water radiometry and is characterised by fixed, offshore platforms with 
negligible tilt and no azimuthal rotation (of the platform itself). However, the above-water protocol 
can be applied in very different circumstances, e.g., from ships, or even small boats, with tilt and 
azimuthal rotation. The overview of protocol-related uncertainties given in Table 2, therefore, refers 
to the generic protocol rather than to any of these specific implementations. 
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Table 1. Summary of the four measurement methods as regards: equipment; standard (S) and variant (V) methods; viewing geometry; protocol maturity/diversity; 
automation maturity; automation challenges; and challenging waters/wavelengths/conditions (see Section 6.2 for more details). The automation challenges refers to 
the protocol-specific challenges and excludes common challenges such as the logistics of maintenance visits, power supplies, hardware failures, radiometer 
calibration requirements, protection from damage, etc. CDOM and NAP are abbreviations for coloured dissolved organic matter and non-algae particles, 
respectively. 

 Underwater Fixed Depths Underwater Profiling Above-Water Skylight-Blocked 

Equipment (in 
addition to 
ship/platform/buoy) 

2 radiance sensors 
Inclinometer 
Pressure/depth sensor 

Radiance sensor and profiling 
platform 
Inclinometer 
Pressure/depth sensor 

Radiance sensor and 
robotic/human pointing or 2 
radiance sensors 
Inclinometer, 
Compass/protractor 

Radiance sensor 
Sky-blocking 
cone/shield 
Inclinometer 

Standard (S) and 
Variants (V) 

S: tethered buoy, at least two 
fixed depths 
V: Single very near-surface 
radiometer; single radiometer 
successively at different depths 

S: free-fall away from ship 
V: platform/mooring-tethered 
vertical wire; Horizontally 
drifting platforms 

S: unpolarised radiometer 
V: vertical polarizer option 

S: tethered buoy 
V: boats and other 
platforms 

Viewing geometry Nadir Nadir Off-nadir, usually 𝜃 = 40°   
and ∆𝜑 = 90°  or 135° 

Nadir (or 
off-nadir) 

Protocol 
maturity/diversity 

Mature Mature 
Mature basis but also diverse 
and evolving skyglint 
corrections 

Mature 

Automation maturity Operational Prototype Operational Feasible 

Automation 
challenges 

Fore-optics contamination 

Fore-optics contamination 
Mechanical reliability of 
profiling (fixed location 
systems) 

Fore-optics contamination 
Fore-optics 
contamination 

Challenging water 
types/wavelengths/ 
conditions 

High 𝐾 (high CDOM/NAP 
blue, red, near infrared) 
High waves 
Very shallow or stratified waters 

High 𝐾 (high CDOM/NAP 
blue, red, near infrared) 
High waves 
Very shallow or stratified 
waters 

Low reflectance (high CDOM 
blue, low backscatter red/near 
infrared) 
High waves 
Scattered clouds in sky-viewing 
direction 

High waves 
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Table 2. Summary of the four measurement methods as regards protocol-related uncertainty estimation. I = Ideal conditions; R = Recommendations; U = Uncertainty 
estimation. Cal = calibration. N/A = not applicable. See text for more details on each topic. Depth measurement and Fresnel transmittance should also be included 
in the uncertainty budget for the underwater fixed-depth and profiling methods, but are not included in the table. Radiometer-related uncertainties must also be 
estimated for all methods but are beyond the scope of this review. 

 Underwater Fixed Depths Underwater Profiling Above-Water Skylight-Blocked 

Non-exponential 
vertical variation 

I: Known (e.g., exponential) variation 
R: Extra depths, profiles and modelling 
U: as R. 

I: Known (e.g., exponential) variation 
R: Measure close to surface 
U: Goodness-of-fit tests, modelling 

N/A N/A 

Tilt 
 

I: Deploy vertical 
R: Monitor inclination and pressure 
U: Modelling, time series analysis 

I: Deploy vertical 
R: Stable free-fall or wire-guided, 
Monitor inclination and pressure 
U: Modelling, time series analysis 

I: Accurate pointing, stable platform 
R: Monitor inclination 
U: Modelling 

I: Stable platform 
R: Monitor inclination 
U: Modelling, time series analysis 

Self-shading from 
radiometer 

I: Negligible size radiometer 
R: Small diameter radiometer 
U: Modelling 

I: Negligible size radiometer 
R: Small diameter radiometer 
U: Modelling 

N/A (in general) 
I: Negligible size cone/shield 
R: Small diameter cone/shield 
U: Modelling 

Self-shading from 
structure/platform 

I: Negligible size superstructure 
R: Limit cross-section, horizontal arms, 
redundant radiometers 
U: Modelling, comparison of redundant 
radiometers 

I: Negligible size superstructure 
R: Limit cross-section, deploy away 
from ship, redundant radiometers 
U: Modelling, comparison of 
redundant radiometers 

I: Negligible size superstructure 
R: Target away from platform (masts) 
or ship (forward from prow), azimuth 
filtering to avoid shadow 
U: Modelling, experiments (different 
heights/positions/azimuths) 

I: Negligible size platform 
R: Limit cross-section, horizontal 
arms, redundant radiometers 
U: Modelling, comparison of 
redundant radiometers 

Fore-optics 
contamination 

I: Keep fore-optics clean (in water) 
R: Inspect/clean/protect, monitor with 
portable cal devices 
U: Pre-/post-cleaning cal of radiometer 

I: Keep fore-optics clean (in water) 
R: Inspect/clean/protect, monitor with 
portable cal devices 
U: Pre-/post-cleaning cal of 
radiometer 

I: Keep fore-optics clean (in air) 
R: Inspect/clean/protect, monitor with 
portable cal devices 
U: Pre-/post-cleaning cal of 
radiometer 

I: Keep fore-optics clean (in air, close 
to water) 
R: Inspect/clean/protect, monitor with 
portable cal devices 
U: Pre-/post-cleaning cal of 
radiometer 

Temporal 
fluctuations 

I: Clear sky, flat water 
R: Time series analysis 
U: Modelling, time series analysis 

I: Clear sky, flat water 
R: Time series analysis, multi-casting 
U: Modelling, time series and 
multi-cast analysis 

(here for sky, see below for waves) 
I: Clear, stable sky 
R: Replicates 
U: Standard deviation of replicates 

I: Clear sky, flat water 
R: Time series analysis 
U: Modelling, time series analysis 

Skylight reflection 
correction 

N/A N/A 
I: Flat sea 
R: Very diverse, see text 
U: Very diverse, see text 

N/A 
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6.2. Underwater or Above-Water Measurement? 

So which is the best approach to use? A newcomer to the field of water radiance measurements 
will typically be confronted with important decisions for: 
• purchasing radiometers and associated equipment; 
• purchasing, renting or arranging access to a deployment platform such as a fixed structure 

(offshore platform, jetty, pier, buoy, etc.), a ship (research vessel, small boat, passenger ferry 
“ship of opportunity”, etc.), a drifting underwater platform, or even a low-altitude airborne 
vehicle (tethered balloon, drone, etc.); and 

• training and financially supporting staff to make the measurements (if supervised) or to setup 
and maintain and monitor the measurement system (if unsupervised), including radiometer 
checks, calibration and characterisation and data processing, quality control, archiving and 
distribution. 
The choice of protocol will affect both the quality and quantity of data and the setting and 

running costs of acquiring data. The choice of protocol will obviously be driven by the objectives of 
the measurement program and the environmental conditions (type of water: brightness, colour, 
depth, vertical homogeneity) as well as by any cost constraints and/or cost-sharing opportunities 
(such as the existence of platforms or other measurement programs). 

The main fundamental differences in data quality that can be expected between the two 
underwater methods and the above-water (skyglint corrected) method, in their most generic 
implementations, can be related to the need for vertical extrapolation in the underwater methods and 
the need for skyglint correction in the above-water method: 
• Uncertainties associated with vertical extrapolation in underwater methods will be highest for 

situations (water types, wavelengths) where the diffuse attenuation coefficient length scale, 1/𝐾 , is small compared to the depth of the highest usable upwelling radiance measurement, 𝑧 . Thus, the requirement for underwater measurements close to the surface becomes more and 
more demanding for waters/wavelengths with high 𝐾 , including blue wavelengths in waters 
with high coloured dissolved organic matter (CDOM) or high non-algae particle (NAP) 
absorption and red and, a fortiori, near infra-red wavelengths in all waters. Self-shading also 
increases for high attenuation waters. 

• Uncertainties associated with skyglint correction in above-water methods will be highest for low 
reflectance waters/wavelengths and for high sun zenith angle (as well as for cloudy and partially 
cloudy skies although these are supposed to be removed by quality control in the FRM context) 
and for blue wavelengths. Thus, the requirement for a highly accurate skyglint correction 
method becomes more and more demanding for blue wavelengths in waters with high CDOM 
absorption (and to a lesser extent high non-algae particle absorption) and for red and near 
infrared wavelength in low particulate backscatter waters. 

It is interesting to note that these two challenging conditions, high 𝐾  and low reflectance, generally 
correlate in highly absorbing waters/wavelengths but anticorrelate in highly scattering waters. 

Both the underwater methods and the above-water methods have uncertainties that increase 
with surface wave conditions because of wave focusing/defocusing effects and skyglint removal 
respectively. 

The skylight-blocked approach has quite different sensitivity to the water type and wavelength 
of measurement from the underwater and above-water approaches, because it requires neither 
vertical extrapolation nor skyglint removal. The most challenging conditions for this method will 
probably be practical deployment in high wave conditions and self-shading correction for low sun 
zenith and high 𝐾  conditions.  

6.3. Future Perspectives 

In contrast to the simpler 𝐸  measurement [5], there has been considerable evolution and 
diversity of the 𝐿  measurement since the publication of the NASA Ocean Optics Protocols [17]. 
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Future improvements to 𝐿  measurements are expected to come in the future from the 
following developments: 
• Improvements in the design and usage of calibration monitoring devices, which can be used in 

the field, are likely to improve identification of fore-optics fouling and radiometer sensitivity 
changes. 

• Model simulations (with polarisation) of the 3D light field and dedicated experiments for all 
four protocols are likely to improve estimation of related uncertainties. 

• Improvements in the stability and reduction in the cost of telescopic masts may reduce 
superstructure shading effects for above-water radiometry. 

• Reduction in the cost of pointing systems, thanks to the video camera surveillance industry, 
should facilitate multi-directional above-water radiometry [110] and improve the protection 
(“parking”) of radiometers when not in use and thus reduce fouling for long-term deployments. 

• Greater use of full sky imaging cameras [111], whether calibrated (expensive) or not (typically 
inexpensive), potentially coupled with automated image analysis techniques, will allow better 
identification of suboptimal measurement conditions. 

• Above-water imaging cameras may allow better characterisation of the air–water interface 
(wave field) and hence better removal of  𝐿  in above-water radiometric measurements 
[104,106]. 

As regards the future for validation of water reflectance more generally: 
• The tendency to move to highly automated systems with long-term, e.g., one year, essentially 

maintenance-free deployments is likely to improve significantly the quantity of data available 
for validation. Networks of such systems further increase the power and efficiency for validation 
purposes. Networks of automated systems are now already operational or in advanced 
prototype testing phases for systems based on the above-water, underwater profiling and 
underwater fixed-depth methods and are conceptually feasible for the skylight-blocked 
approach. 

• The advent of operational satellite missions such as VIIRS and Sentinel-3/OLCI, Sentinel-2/MSI 
and Landsat-8/OLI with the need for a guaranteed long-term validated data stream will increase 
the need for FRM. 

• The huge increase in optical satellite missions used for aquatic remote-sensing will also increase 
the need for highly automated measurement systems and the economy of scale for such 
deployments—one in situ radiometer system can validate many, many satellite instruments. 

As regards the needs of the validation community, it is recommended to: 
• Update this review, e.g., on a 10-year time frame, to take account of developments in the 

protocols, particularly in the estimation of uncertainties and for the above-water family of 
methods, where evolution and innovations in basic methodology are continuing. Such an update 
is best preceded by community discussion at an international workshop. 

• Organise regular intercomparison exercises, e.g., on a two-year time frame, covering the full 
diversity of methods, to ensure that measurement protocols and scientists, remain state of the 
art (as required by the FRM context). 

Although not targeted by this review it is possible that the considerations developed here may be 
useful for other applications where 𝐿  measurements are needed, including calibration/validation 
data for IOP retrieval algorithms.  
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