Shells from aquaculture: a valuable biomaterial, not a nuisance waste product

James P. Morris1, Thierry Backeljau1,2 and Gauthier Chapelle3

1 OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
2 Evolutionary Ecology Group, University of Antwerp, Antwerp, Belgium
3 Independent researcher, Brussels, Belgium

Correspondence
James P. Morris, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000 Brussels, Belgium.
Email: jmorris@naturalsciences.be

Received 1 June 2017; accepted 2 October 2017.

Abstract

Mollusc aquaculture is advocated as a highly sustainable food source and may play an important role in future food security globally. With production increasing worldwide, it is timely to appraise all aspects of aquaculture when considering its expanding role as a food source. In this regard, one regularly overlooked aspect of mollusc aquaculture is waste generation: namely the production of calcareous shells. Shells from the aquaculture industry are widely regarded as a nuisance waste product, yet at the same time, calcium carbonate is mined in the form of limestone and viewed as a valuable commodity. In a time of increased awareness of the need for a circular economy, the aquaculture and seafood industry should consider shells as a valuable biomaterial that can be reused for both environmental and economic benefit. This review discusses the current waste shell issue and identifies large-scale shell applications that are already in place. Further, it highlights proposed applications that have the potential to be scaled up to address the problem of waste shell accumulations and reduce our reliance on environmentally damaging incineration and landfill disposal. Of the plethora of shell valorisation techniques proposed in the scientific literature, this review will focus only on those that can incorporate large-scale shell utilisation, and do not require high-energy processing, and are thus; simple, sustainable and potentially economically viable. Further, this review questions whether, in many cases, shells can provide more inherent value being returned to the marine environment rather than being used in land-based applications.

Key words: aquaculture, biomimicry, mollusc shell, sustainability, waste valorisation.

Introduction

World aquaculture production is increasing rapidly as seafood demand grows and marine capture production stalls (FAO 2014). Commercial shelled molluscs (referred to herein as molluscs or shellfish) are an important component of the global aquaculture industry and account for ~23% (or ~15 million tonnes) of the total production by live weight (FAO 2014). There are a number of regions across the globe where mollusc aquaculture is particularly prevalent. Eastern Asia, particularly China, dominates by live production weight. However, Western Europe, Chile and the USA also host significant mollusc aquaculture operations (FAO 2014, 2015). The distribution of the world’s top 10 mollusc-producing countries is highlighted in Figure 1. Practiced responsibly, mollusc aquaculture can be one of the lowest impacts (environmentally, and in terms of energy consumption) and most sustainable proteinaceous and nutritious food sources currently available (Shumway et al. 2003; Klinger & Naylor 2012; Bostock et al. 2016). Both global aquaculture (freshwater and marine) and its shellfish component are likely to be of increasing importance to the food industry in the light of impending freshwater shortages, energy security worries and an increasing human population (Bogardi et al. 2012; Ozturk et al. 2013). Recent technological and scientific advances have allowed for the development of offshore mollusc farming, and farming as part of an integrated multitrophic aquaculture (IMTA) approach (reviewed by; Chopin et al. 2012; Granada et al. 2015). The refinement of
these techniques may further improve the sustainability and productivity of the global aquaculture sector. Further, attention has been brought to the idea that mollusc culture, in particular, can provide ecosystem services such as anthropogenic eutrophication control (Lindahl et al. 2005), and reef growth for biodiversity maintenance (Coen & Luckenbach 2000) and natural coastal protection (Ridge et al. 2015; Walles et al. 2016).

One key aspect of shellfish aquaculture and food production that remains a barrier to its continued sustainable growth is the issue of shells. Shell waste can be a big problem for shellfish producers, sellers and consumers, both practically and financially. Species dependent, shells can account for up to 75% of the total organismal weight (Tokeshi et al. 2000). Consequently, a large proportion of production is considered by the shellfish industry as a nuisance waste product. In parts of the UK, for instance, the proper disposal of shells at a landfill site could cost over £80 per tonne (HM Revenue and Customs standard rate landfill tax as of 1st April 2016), a sizeable figure for a small or medium enterprise. Shell piles are common around the world as an unregulated disposal procedure and can be an eyesore, creating strong noxious smells and contaminating the local environment if uncontrolled (Mohamed et al. 2012). When promoting mollusc aquaculture as a low-impact food source, all aspects of production must be considered. Further, if suggesting that increased shellfish aquaculture production could be an important component in a shift away from many of the unsustainable food sources we currently rely on, then by-products of that industry should be a prime consideration.

Historically, shells have been an important part of human culture: acting as a globally traded currency (Johnson 1970) peaking in the mid-19th century, and as primitive tools dating as far back as 100 000 years ago, used by the Neanderthals for example (Douka & Spinapolice 2012). Shells still capture the imagination of adults and children alike, and the global ornamental shell trade remains strong (Nijman et al. 2015). Scientists have long understood the impressive attributes of shells: made from 95 to 99.9% calcium carbonate, with a small amount of organic matrix (Currey 1999; Harper 2000). Despite many positing that major innovations may arise from the synthetic replication of shell structures and properties, their remarkable structural and mechanical attributes are yet to be copied beyond the microscale in research laboratories (Nudelman & Sommerdijk 2012).

Calcium carbonate (CaCO₃) from limestone is one of the most heavily exploited minerals on the planet (USGS 2016). It is mined in huge quantities across the globe as ‘ground calcium carbonate’ (GCC) for a myriad of applications, including cement production. Other applications,
such as filling and whitening agents in paper manufacture, require higher-grade synthetically produced ‘precipitated calcium carbonate’ (PCC), which requires additional processing of high-grade mined limestone. GCC and PCC have significant environmental costs associated with their production, both in terms of the energy intensive and ecologically damaging nature of resource mining (Smil 2013), and also as a significant CO₂ source during the various stages of processing: cement production accounted for ~8% of the global CO₂ emissions in 2012 (Olivier et al. 2012). Herein lies the incongruity: by one sector, CaCO₃ is mined and processed in vast quantities for numerous and varied applications, whilst in another industry, CaCO₃ is produced as a by-product and viewed as a nuisance waste. It is important to note that the scale of CaCO₃ production by the aquaculture industry is orders of magnitude smaller than that of the mining industry, but nevertheless the stark contrast in the way the two CaCO₃ sources are viewed is striking.

Over the past couple of decades, numerous articles have been published on the subject of shell valorisation, citing a variety of potential applications that could alleviate the burden of waste shells on aquaculture and food producers, and in some cases, present economic as well as environmental incentives to do so. Further, understanding has recently grown of the importance of shellfish and mollusc shells on the healthy functioning of a variety of complex ecosystems. In the light of such research, a growing understanding of the unsustainable nature of many current human exploits and a concerted drive towards a more circular economy, it might be expected that shell valorisation is already commonplace in areas of intense aquaculture. However, this is not the case. Aside from a few shell enterprises, and many small-scale localised initiatives (as described below), the majority of shells from aquaculture processing remain a waste product. This article highlights the current shell market and discusses the feasibility of other potential shell applications. Further, it discusses whether the focus of shell valorisation should be towards economically beneficial uses, environmentally centred applications or whether shells have more value simply being returned to the marine environment.

Shell valorisation

Valorisation is the principle of assigning value, or greater value, to something: where value can be seen from an economic, social or environmental perspective. Valorisation is a particularly pertinent concept with the recent drive towards recycling, zero waste industries and a more circular economic system (European Commission 2015). Mollusc shells, as a by-product of the aquaculture industry, can be given value in numerous ways (Morris et al. 2016). The following sections will introduce and review current, potential and unexplored valorisation strategies. The current applications section includes those that are well established, widely exploited or large-scale and sustainable. The potential and unrealised applications section includes those that have been discussed in academic literature or elsewhere, have been advocated as feasible or have been trialled, but have not become established or widespread applications. The final section will discuss the value of returning shells to the marine environment, highlighting current projects that are returning shells to the water, the rationale behind such projects, and discussing further benefits of such activities.

One key consideration regarding shell waste in the aquaculture and food industries is the point at which the waste is produced. Unlike many other food sources where a single process is ubiquitous, shells can be removed by the aquaculture producers, by a processing company, by restaurateurs or by consumers (Fig. 2). Waste production can depend on the species as well as the type of product. For instance, in Europe, mussels are sold and served in full shell or processed and canned/frozen without shell. Oysters are commonly provided to restaurants in full shell and consumed in half-shell. Scallops on the other hand are more generally processed and sold with no shell. As such, shell waste is produced in potentially many different locations, making large-scale valorisation more difficult. Yet, as the following examples show, valorisation is still possible. Further, if shellfish aquaculture is one component in a global movement towards a more sustainable food sector, then the way we eat shellfish in many parts of the world may need to adapt also: in part moving away from a luxury item, served in shell for aesthetics, towards a more commonplace protein source, preprocessed to remove shells. In such a scenario, more shell waste would be generated in single locations, and thus, the opportunities and motivation for large-scale shell valorisation would also be greater. In contrast to European mollusc consumption, in Asia (particularly China), the majority of products are processed, and shells are removed at the point of harvest and regularly discarded back into the water, or along the coastline (pers. observ.; pers. comm.). This combined with the scale of production means that shell waste issues are of greater concern than in Europe, for instance. This also means that the opportunities for shell valorisation projects are greater.

A key consideration in shell valorisation is the proximity of shell waste production to suitable processing facilities, as well as proximity to regions in which potential shell applications have a market. A recently conducted a life cycle assessment (LCA) on oyster shell waste (Crassostrea gigas) in Brazil, incorporating distance between shell source and the processing facility, found that a distance >323 km between the two yielded no environmental benefit of shell valorisation over landfill disposal (de Alvarenga et al.
2012), highlighting that consideration must be given to the potential distances between source and application. Aside from environmental benefits, economic benefits of shell valorisation are also very dependent on distance.

Finally, there is a plethora of published research on shell valorisation where shells, in various states, are converted to calcium oxide (CaO) prior to their use in the described applications (e.g. Viriya-empikul et al. 2010; Hu et al. 2011). This conversion is carried out via the process of calcination: heating to high temperatures in air or an oxygen-enriched environment. For limestone, the conversion of CaCO₃ to CaO requires heating to ~800°C, and produces CO₂ in the process. This article concerns the sustainable valorisation of shell waste, and as such, those applications that require calcination, or other high-energy and CO₂-yielding pretreatment processes do not, in the authors’ opinion, provide scalable and sustainable solutions to shell waste at present. As an example, calcined shells have been advocated as a potential CaO source in CO₂ sorbents. Wang et al. (2014) performed a LCA on CaO derived from waste oyster shells from oyster farms in Eastern Taiwan (Crassostrea angulate). As a CO₂ sorbent, waste shells were determined to be a more sustainable starting medium in CaO production when compared to mined limestone in terms of CO₂ emissions. Although waste reutilisation is a step in the right direction in any process, CaCO₃ calcination will remain an inherently unsustainable process regardless of the CaCO₃ source. Processes such as these may hold future value in solid carbon storage techniques, but at present, high-energy conversion of CaCO₃ to CaO limits such avenues. Still, CaO is necessary in many industries; however, as will be highlighted below, shells can be reused in a variety of ways that present more simplified and more sustainable applications.
There is also a plethora of potential small-scale shell valorisation techniques. Although such applications are interesting in the discussion of innovation in waste reuse, these techniques, such as the use of shell powder in biomedical techniques (as highlighted by Green et al. (2015)) or in functional cosmetics (Latire et al. 2014), will not provide solutions to large-scale shell waste issues, which is the focus of this article. Previous articles have reviewed aquaculture and shell waste valorisation from a more generalised perspective without specific considerations for scalability or sustainability (Ferraro et al. 2010; Yao et al. 2014). As such, the following sections will concentrate on those applications that do not require high-energy processing, and on those that have the potential to significantly impact global and regional-scale waste shell problems.

Current market for mollusc shells

There are several large-scale shell valorisation strategies that are currently exploited. Generally, these applications have been established in areas that generate large amounts of shell waste, and where mutually beneficial partnerships have been established between shell producers and other industries. An example of this is the historic and continued use of mussel shells (*Mytilus galloprovincialis*) as a soil liming agent in agriculture in Galicia, Northern Spain (as described below). Further, there is also an online market for shells, promoted for a variety of applications, as highlighted in Table 1 (and Appendix). The following sections will highlight the major shell applications currently exploited.

Livestock feed supplement

Calcium supplementation is used to improve the health of livestock, particularly bone health, but also in laying birds as a supplement to improve the quality and strength of eggshells (Suttle 2010). Calcium supplementation has been used widely in laying hen farming over the past several decades where CaCO$_3$ sourced from mined limestone is commonly used. Several studies have tested the effect of oyster shell-derived CaCO$_3$ in comparison with a more standard limestone-enriched diet, on poultry, and found that as well as being a potentially cheaper source of CaCO$_3$, crushed oyster shell at optimal dosage can perform equally to limestone as a form of calcium supplementation across a number of tested parameters. In 1971, Scott and colleagues found that partially substituting oyster shells for limestone both increased the egg production rate and eggshell thickness (Scott et al. 1971). Quisenberry and Walker (1970) observed similar results with oyster shell supplementation, showing increased eggshell weight and thickness (Quisenberry & Walker 1970). A later study found no significant differences between oyster shells, clam shells (*Spisula solidissima*), limestone, aragonite or eggs shell supplementation across a number of hen and egg performance indices (Muir et al. 1976). In 1990, studies suggested that oyster shells were both a cheaper and more effective calcium supplement than limestone in cottonseed cake (CSC) feed mix for broiler chickens (Aletor & Aturamu 1990; Aletor & Onib 1990). Chickens fed on an oyster shell-enriched CSC diet showed higher weight gain capacity than those fed on an unenriched CSC diet (Aletor & Onib 1990). However, another study found that calcium source had no appreciable effect on calcium utilisation and chick performance when comparing bivalve shells, oyster shells and limestone sources (Guinotte et al. 1991). Further, Ajakaiye et al. (2003) found no significant difference between marine shell-derived CaCO$_3$ and mined CaCO$_3$ sources, having tested bivalve, periwinkle and oyster shells (Ajakaiye et al. 2003). However, more recently, and with more modern feed mixes, it has been shown that the addition of shells (*Venus gallina*) to a limestone supplement significantly improved the egg production performance of laying hens (Cath et al. 2012). Another recent study, again, found that oyster shell alone performed better than snail shell, wood ash or limestone as a calcium supplement in terms of growth response (weight gain and feed intake; Oso et al. 2011). Further, it has even been suggested that nuisance invasive molluscs, such as the zebra mussel (*Dreissena polymorpha*), could be used as a feed and calcium supplement for chickens rather than having them disposed

<table>
<thead>
<tr>
<th>Type of application</th>
<th>Processing required</th>
<th>Quantity sold</th>
<th>Selling price (as of June 2017)</th>
<th>Appendix references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poultry feed</td>
<td>Heat treated, crushed</td>
<td>1–25 kg</td>
<td>0.46–3 € per kg</td>
<td>1–7</td>
</tr>
<tr>
<td>Pet bird nutrition</td>
<td>Heat treated, crushed</td>
<td>440–2.5 kg</td>
<td>0.66–7 € per kg</td>
<td>8–10</td>
</tr>
<tr>
<td>Biofilter medium</td>
<td>Heat treated, crushed</td>
<td>600–1000 kg</td>
<td>0.46–0.5 € per kg</td>
<td>11, 12</td>
</tr>
<tr>
<td>Aquarium/pond pH buffer</td>
<td>Heat treated, crushed, chlorine washed</td>
<td>5 kg</td>
<td>46 € per kg</td>
<td>13, 14</td>
</tr>
<tr>
<td>Soil liming</td>
<td>Heat treated, powdered</td>
<td>22.7 kg</td>
<td>0.46–0.6 € per kg</td>
<td>15–18</td>
</tr>
<tr>
<td>Shell aggregates</td>
<td>Whole shell, dried</td>
<td>250–1000 kg</td>
<td>0.36–0.9 € per kg</td>
<td>19–21</td>
</tr>
<tr>
<td></td>
<td>Dried, crushed</td>
<td>15–1000 kg</td>
<td>0.36–3 € per kg</td>
<td>22–24</td>
</tr>
</tbody>
</table>

Table 1 Examples of the current online bulk mollusc shell market, quantity sold and € price per kg for each application type (reference links provided in Appendix)
of at landfill (McLaughlan et al. 2014). McLaughlin found that the zebra mussel meal (meat and shell) was palatable for chickens, and despite lower than expected protein and energy levels in the feed, they concluded that zebra mussel feed could still be utilised as a calcium supplement on account of the CaCO₃ shells (McLaughlan et al. 2014).

The above summarises some of the key published scientific literature on shells as a calcium supplement for livestock. It is clear that shells are, at least, comparable to commonly used limestone as a source of calcium for livestock, with several studies suggesting shell-derived CaCO₃ can outperform limestone in this regard. In 2011, there was a population of 363 million laying hens in the EU-27 group (Eurostat 2011). Of those, France was the biggest egg producer, at 924 000 tonnes in 2011 (Eurostat 2011). Laying hens require ~2.5 g of daily calcium, and with a retention rate of ~50% that would equate to 4.0–4.5 g of calcium (Dale 1994), or ~10 g of crushed shell CaCO₃ (taking into account a ~40% calcium content of shell-derived CaCO₃).

To a lesser extent, broiler chickens also benefit from calcium supplementation in their diet. As such, there is certainly a considerable demand for calcium carbonate by the livestock industry. However, the expansion of the use of mollusc shells may be limited by the costs associated with aggregating enough mass of shells at a single location for the sort of continued and reliable source that large livestock producers expect.

For the EU, as outlined in Regulation (EC) No 1069/2009, shells can be used for supplementation as long as they meet a free-from-flesh standard, with which they are then exempt from animal by-product classification. Each member state relevant competent authority controls the designation of free-from-flesh standards. Finally, distance between shell production and each farm must be considered. From both an environmental and economic perspective, only farms in close proximity to a large shell-producing operation are likely to be candidates for this type of shell valorisation.

Agricultural liming agent

The second major market for shells is, again, in the agricultural sector, but involving the neutralisation of acidic and metal contaminated soils. Generally referred to as liming, the practice involves treating soil or water with lime (or a similar substance) in order to reduce acidity and improve fertility and oxygen levels. Liming, reportedly, dates back to the first and second centuries B.C. and has subsequently been prevalent in many societies since then, as reviewed by Barber (1984). The practice of liming is well known as having numerous positive effects on the productivity of agricultural crop yields and can also have longer term positive effects on soil quality and structure as reviewed by Haynes and Naidu (1998). Further, although still unresolved, it has been suggested that under certain conditions, the application of a liming agent to agricultural land can act as a net carbon sink mechanism (Hamilton et al. 2007).

Crushed mollusc shells from the aquaculture industry can be a viable replacement for more commonly used mined-CaCO₃, such as limestone. A number of studies have quantified various effects of the application of crushed mollusc shells to agricultural land. In Korea, crushed oyster shells were applied to two acidic soil types at a variety of rates, and assessments of Chinese cabbage yield, and soil pH and nutrient metrics, were analysed. The study found that the crushed oyster shell meal significantly increased soil pH, improved soil nutritional status metrics including available phosphate and organic matter mass (Lee et al. 2008). Previous concerns regarding elevated salt levels (NaCl) were tested, and despite a slight increase in soil Na concentrations, no signs of toxicity damage were observed in the cabbage. Further, improved soil status promoted microbial populations, increasing nutrient cycling. Each of the above likely contributed to significantly increased cabbage productivity in both soil types with the application of crushed oyster shells. Highest productivity was achieved under the application of 8 Mg ha⁻¹ of crushed oyster shells (Lee et al. 2008). In Galicia (Spain), mussel shells (Mytilus galloprovincialis) have been used as a liming agent on soils. In 1997, a study found that 9 t ha⁻¹ of mussel shell had a comparable short-term positive effect on soil acidity as conventionally used magnesium limestone (Iglesia Teixeira et al. 1997). However, in the longer term, mussel shell was found to be less effective than mined liming agents in terms of soil fertility (Iglesia Teixeira et al. 1997).

More recently, Garrido-Rodríguez et al. (2013) studied the effect of mussel shell treatment on the ability of soils to ameliorate the detrimental effects of copper addition. They found the mussel shell-treated soils had a higher desorption rate than untreated soils and concluded that mussel shell addition could help reduce the potential threat of copper-enriched soils under acidification events (Garrido-Rodríguez et al. 2013). Another study in Galicia (Spain) found that the application 24 Mg ha⁻¹ of ground mussel shell increased the adsorption and decreased the desorption of arsenic in both forest and vineyard soils, thus reducing the risk of arsenic soil pollution in these areas (Osorio-López et al. 2014).

Acidic soil that could benefit from the application of a liming agent is prevalent across large areas of Europe, particularly in more northern regions (Fabian et al. 2014). On a large scale, Galicia is the major region in Europe currently utilising shell waste as a liming agent. This is both because of the proximity of agricultural land to large shellfish aquaculture sites, and because of the presence of a large shell processing facility.
On a smaller scale, there is also interest amongst gardeners and landscapers regarding the use of shells as a decorative topsoil or mulch (Table 1). In such cases shells are sold mainly for decorative purposes but with the added potential functionality of acting as a liming agent/pH buffer.

The use of sufficiently clean, cooked, shells is determined in the EU by each member states’ competent authority, as outlined in Regulation (EC) No 1069/2009. In England, for instance, the use of cooked and cleaned shells, in crushed form, is allowed for use as organic fertiliser or soil improver as laid out in the Department for Environment, Food and Rural Affairs (DEFRA) authorisation B6 (DEFRA 2017). Other EU member states and non-EU countries may have further restrictions or exemptions. Additionally, entirely free-from-flesh shells are exempt from animal by-product classification in the EU, as outlined in Regulation (EC) No 1069/2009 and could be used without any restrictions.

Shell aggregates

There are many examples of shells being used as a simple material for construction or incorporated into aggregate and mortar mixes. Shell waste has many characteristics that might make it suitable for certain construction aggregates. However, care must be taken in such propositions though, as many construction materials are highly regulated for performance and safety purposes (as outlined in; EU Regulation No. 305/2011). The concept of shell use in construction is by no means a new one: there are many historical examples of shells in construction, much of which is known as ‘Tabby’. Florida (USA) has a particularly rich history of incorporating whole oyster shells into the walls of houses, being of likeness to a modern day poured concrete structure (Sickels-taves 2016). There are ongoing projects to incorporate shell waste into aggregate mixes. In Spain, Galician mussel shells have been tested for their suitability in aggregate mixes (project website: https://proyectobiovalvo.wordpress.ss.com, accessed: 20/09/2017). Whole oyster shells are used for simple wall structures in coastal villages associated with oyster aquaculture in China, and crushed scallop shells have been used as a simple path aggregate on the Isle of Mull, Scotland (pers. observ.). Undoubtedly, many other examples exist of this pragmatic use of waste shells, but, in order for these applications to become more established, they must be science-backed and controlled, in order to meet regulations. At this time, shell incorporation in aggregates and mortars is largely primitive, and thus, the discussion of the scientific literature in this area is included below, under potential and unrealised applications, rather than being discussed here as an established market.

Biofilter medium

There is a significant body of research on the use of mollusc shells as biofiltration medium for treating wastewaters. However, a large proportion of that research does not use shells directly, but pretreats them via calcination or pyrolysis, forming CaO. This adjusted product is then found to be a good filter medium (Kwon et al. 2004; Ma & Teng 2010; Castilho et al. 2013; Chiou et al. 2014). However, as stated above, high-energy conversion of shells is not deemed a sustainable or scalable solution to the issue of large-scale shell waste at present. As such, only literature that tests the suitability of uncalcined/unpyrolysed shells as biofilter mediums has been considered, representing both the current market for shells sold as biofilter media and also a more feasible large-scale potential valorisation strategy moving forwards.

The use of mollusc shells as a treatment for heavy metal contaminated wastewaters was explored using both aragonite-rich razor clam shells and calcite-rich oyster shells. It was found that both shell-derived powders had similar Zn$^{2+}$ sorption capacities. However, the calcitic oyster powder proved a better Pb$^{2+}$ sorbent, whilst the aragonitic clam powder had a better capacity for Cd$^{2+}$ sorption (Du et al. 2011). Because geological CaCO$_3$ is more prevalent in calcite form, the authors suggest that aragonite-rich shells maybe of particularly use in wastewater treatment facilities. However, the mix of both calcite and aragonite is needed to optimise heavy metal removal from wastewaters. Further, as the shell preparation technique was simple (washed, air-dried and pulverised), in areas where waste shells are generated, the use of shell powder may be an economically viable sorbent for inclusion in wastewater treatment facilities using this technique (Du et al. 2011). Another study, conducted in India, showed that similarly treated shell dust from the invasive freshwater snail (*Physa acuta*) was an efficient Cd$^{2+}$ sorbent from an aqueous solution (Hossain & Aditya 2013). Further, a report commission by the Auckland regional council in 2010 (New Zealand) highlighted the potential of mussel shell waste as a replacement for graded sands in the sand filters conventionally used in storm water treatment facilities (Craggs et al. 2010).

There is also a small market for shells as a filtration and pH buffering medium in ponds and aquaria (Table 1). The potential biofiltration capacity of shells is described above, and the pH buffering capacity of CaCO$_3$ is well known in scientific literature. Ponds and aquaria vary in pH according to day/night cycles due to the presence of algae/plants and respiring organisms, and the concomitant variation in dissolved CO$_2$. However, the maintenance of a steady pH flux is important for healthy ponds and aquaria. Crushed shells are sold as simple pH buffering substrates to prevent dramatic acidification. They are also sold for inclusion in
trickle and biological filtration systems for their ability to remove unwanted water contaminants, such as heavy metals in addition to their pH buffering capacity.

Potential and unrealised applications of mollusc shells

The applications of shells described in the section above all have some current and sustainable market value. This section will describe potential and as yet unrealised applications of shells. Such applications may have been theoretically discussed, tested in a laboratory setting or used in real-world scenarios, but have yet to attain a market value, or become an established valorisation strategy. As before, many potential shell valorisation techniques described in the scientific literature require high-energy processing, in many cases to convert the shell CaCO₃ to CaO. The following potential applications are those that could prove viable economically whilst also being environmentally benign.

De-icer grit

Paved and tarmacked surfaces can become impassable with even a small amount of snow, ice or frost. A common strategy in many developed countries is to spread de-icing and anti-icing substances. These act to either remove snow, ice or frost (de-icer) or delay their formation (anti-icer). Both also aid the mechanical removal of snow, ice or frost once established. Excluding airports, the most common de-icing substances are chlorine-based, such as rock salt (NaCl). De-icer and anti-icer are sometimes collectively referred to as road grit. Road grit is inexpensive and usually available in large quantities; however, in recent years, the UK and Europe have experiences numerous localised shortages during cold periods due to a lack of stockpiling and uncertainty of demand. It is well known that chlorine-based road grits can be detrimental to both the urban environment and the natural environment: road grit is specifically not used in airports because of the corrosive effect it can have on aeroplanes. Research has shown that road grits can have negative effects on the natural environment in close proximity to its use (as reviewed by: Fay & Shi 2012), and Forest Research (the research agency of the Forestry Commission, UK) reports a variety of detrimental effects of salt contamination and spreading techniques on a number of common UK tree species (Webber & Rose 2011).

One potential environmental-friendly road grit not containing chlorine is calcium magnesium acetate (CMA) or any calcium acetate derivative. There have been a number of publications regarding CMA as an alternative to chlorine-based de-icers over the past few decades. Most have concentrated on the use of waste products as acetate donors, for instance: vegetable waste (Jin et al. 2010), cheese whey (Yang et al. 1992), bamboo vinegar (Jiang et al. 2010), as well as wood and paper waste biomass (Wise & Augenstein 1988). There is little discussion of the potential use of waste CaCO₃ from the aquaculture industry as the calcium donor in the formation of calcium acetates. There are, however, reports of the use of scallop shells mixed with apple pomace waste from two industries local to the Aomori Prefecture in Northern Japan being combined to form a calcium acetate de-icer substance for use on local roads.

The formation of an eco-friendly de-icer substance from the waste shells of shellfish aquaculture, mixed with a mild acetate waste substance from another industry such as those listed above could prove an environmentally beneficial use of shells, and with the recent localised shortfall in de-icer substances across Europe during cold periods, there is potentially a market for alternatives to road grit as de-icing agents. Biochemical oxygen demand (BOD) is an important consideration for this potential application (as highlighted by FitzGerald 2007). BOD is the amount of dissolved oxygen required for the biological breakdown of organic material within a given water sample and is used as a proxy for organic pollution. It stands that de-icer substances of organic origin may produce greater BOD load to localised water. This should be tested, and the impact weighed against the known impact of chlorine-based road grits on the localised environment.

Green roofing substrate

Green roofs, also known as living roofs, have seen a surge in popularity in the last decade, particularly in urban areas, as there is a growing conscience of the importance of green spaces on environmental health. Green roofs can have a number of beneficial effects: increasing habitat space for wildlife (Brenneisen 2003), mitigating urban heat island effects (Santamouris 2014), providing building insulation (Niachou et al. 2001), providing rainwater absorption and improved wastewater management (Berndtsson 2010), as well as potentially providing a stress-reducing and attention-increasing environment for those in proximity (Lee et al. 2015). Green roofs typically come in two forms: extensive and intensive. The two are differentiated according to the depth of planting medium used and the need for maintenance: type 1 extensive roofs having 10–25% of the growing medium of type 2 — intensive roofs. Extensive roofs are designed for minimal maintenance, whereas intensive roofs can be more versatile but require maintenance as a garden would. Both types of roof are designed with the same principle layers: vegetation, growing medium, filter membrane, drainage layer, root barrier and waterproofing membrane (Weiler & Scholz-Barth 2009).
Another potential use of waste mollusc shells is as the drainage layer in green roofing structures. The drainage layer is important in carrying away excess water from the roof. It is a 3D structure between the filter layer and the waterproof membrane (Weiler & Scholz-Barth 2009). Whole shells may be ideal for such structures, as when heaped they provide a complex 3D structure to aid drainage. In addition, CaCO₃ shells incorporated into green roofing structures may help with the neutralisation of acid rain, and the reduction in heavy metal contamination in the resultant drainage water. Shells could also be incorporated into the filtration and topsoil layers of a green roof for their bioremediation potential. Green roofing has many ecological and environmental benefits, and those interested in green roof structures may also be inclined to the idea of incorporating waste products into such structures. Weight is a primary concern of any potential green roof layering material, and various shell types must undergo water-saturated weight tests to determine their feasibility in specific projects.

Raw shell biofilter

Although included in the previous section with examples of shells already being used and sold as a biofilter substrate, there are many more avenues that are yet to be fully exploited for this potentially simple valorisation strategy. As highlighted in the section ‘Biofilter medium’, uncalcined, variously graded calcareous shells can be used as: heavy metal, nitrate, sulphate and phosphate sorbents, as well as a pH buffering substrate and an oxidation substrate (reduction in biochemical oxygen demand). Shell valorisation of this kind has, as yet, been restricted to private enterprises and farms, with only the example of Auckland regional council (New Zealand) commissioning a study into the use of shells in public infrastructure (Craggs et al. 2010). Because of the simplicity of this valorisation strategy, the lack of high-energy processing of shells and the ubiquity of wastewater treatment needs in both urban and rural areas, the potential for shells to be used as biofilters is much greater than its current exploitation.

Construction aggregates

There is a small body of research concerning the use of calcareous shells in aggregates and mortar mixes, and examples of projects incorporating shells into certain aggregate mixes (as discussed above). This avenue of shell valorisation does hold further promise for aggregates and mortars that are not tightly regulated.

In 2004, a study addressed both the growing issue of oyster shell waste associated with aquaculture in South Korea and the need for aggregate substitutes because of dwindling aggregate sands. The study tested large and small particulate crushed oyster shell mixes to conventional sand mixes as a mortar. It was found that small oyster shell particles (2–0.074 mm) were a potentially viable substitute to conventional mortar sands in terms of compressive strength. Further, the strength of the small oyster shell particle mix was improved with the addition of fly ash (a common by-product of coal burning, and regularly added to Portland cement mixes; Yoon et al. 2004). Another study, investigating the incorporation of mussel shell waste in Spain into mortars, found that differences in particle microstructure between quarried limestone (rounded particles) and mussel waste CaCO₃ (elongated prismatic particles) resulted in mussel waste-derived mortars showing improved setting times and final strength (Ballester et al. 2007). The authors concluded that ground mussel shell waste could be incorporated into cement mixes, reducing the cement mix cost as well as providing environmental benefits of reduced quarried limestone reliance. In France, a study investigated the incorporation of crushed Crepidula sp. (slipper limpet) shells into pervious concrete mixes and concluded that shell incorporation did not have an adverse effect on the concretes mechanical strength and increased porosity allowed for better water permeability, an important characteristic of pervious concretes (Nguyen et al. 2013). Further studies have found similar viability of shell incorporation in various aggregate mixes (Yang et al. 2010; Lertwattanaruk et al. 2012; Kuo et al. 2013; Nor Hazurina Othman et al. 2013).

Shells returned to the marine environment

The preceding sections have shown that shells are already being utilised for various purposes and highlight that there are further sustainable applications for shells that have yet to be exploited. There is, however, a growing body of evidence in scientific literature to suggest that shells are a valuable material from a biological perspective within the marine environment and may provide and promote a variety of ecosystem services that could be of similar or greater value than those previously described. Further, there are an increasing number of organisations, charities and research groups that are already returning shells to the marine environment for conservation reasons. This section will highlight the potential ecosystem service that waste shells from aquaculture could provide being returned to the marine environment by various methods and address the question of whether we should be seeking economic value from shells in the ways described in the preceding sections, or whether shells have more inherent and enduring value being returned to the marine environment.

Ocean alkalinisation has been proposed as a method of limiting atmospheric CO₂ increases and ocean acidification through pH buffering (Ilyina et al. 2013). In the published
literature, limestone is regularly cited as a potential liming agent (Harvey 2008). The efficacy of ocean alkalinisation techniques is debated, however, due to the volume/mass of buffering agent required. CaCO₃-based buffers such as limestone are unlikely to be practical at large scale in the near future, with minerals such as olivine (Mg²⁺, Fe²⁺)₂SiO₄ holding greater potential (Köhler et al. 2013). However, more localised and confined systems that are affected by acidity could be treated in a simple and cost-effective way by the addition of CaCO₃. Korfali and Davies (2004) have shown that rivers under the influence of limestone showed high metal self-purification processes and increased alkalinity. Liming has also been shown to facilitate the recovery of species lost during temporal acidification events (Raddum & Fjellheim 2003). Similar to the effects described in the ‘biofilter medium’ section, CaCO₃ can have many positive influences on local watercourses and systems. The practice of liming rivers with limestone is not new (Olem 1990). However, there is little evidence of the use of powdered, crushed or whole waste shells as the calcium carbonate source. If significant shell waste is produced in areas where local water systems would benefit from liming practices, it could be a mutually beneficial practice, alleviating both acid water problems and the cost and environmental strain of dumping waste shells at landfill.

Waste shells can also have many positive influences from a more biological perspective. Oyster populations rely on a suitable substrate for larval settlement and attachment. In many cases, in natural systems, existing adult shells provide such a substrate, resulting in oyster reefs (Gutierrez et al. 2003). Many potential substrates can act as sites for larval settlement: granite, concrete, steel, plastics, etc. (Tamburri et al. 2009). However, research has shown that oyster larvae have an affinity for biogenic materials such as shells (Nesterode et al. 2007; Kuy kendall et al. 2015), and particularly to the tissue extracts and shells of their parent species (Crisp 1967; Devakie & Ali 2002; Su et al. 2007). In recent decades, there have been numerous examples around the globe of declining oyster populations. Alongside worsening water quality, and diseases and parasites, overfishing and loss of shell reef structures are regularly cited as major causes of population crashes (Brumbaugh & Coen 2009; Beck et al. 2011). Population declines have been observed on both the east and west coast of the USA (Rothschild et al. 1994; Brumbaugh & Coen 2009), on the south coast of the UK (Kamphausen et al. 2011), in Tasmania, Australia (Edgar & Samson 2004), and in China (Mackenzie 2007) as examples.

With a developing understanding of the importance of ecosystem preservation and the services that healthy ecosystems can provide, there have been a growing number of oyster reef restoration projects initiated and a concurrent increase in research articles studying the variety of potential ecosystem services that they provide (Beck et al. 2011; Baggett et al. 2015). Restoration programmes and research typically use dredged shells or calcium carbonate-based structures (concrete reef balls, for instance) to create a suitable settlement site for oyster larvae, then either let the natural larval stock settle if present or seed the reef structures from hatchery stock. These programmes are proliferating in the USA (Piazza et al. 2005; Coen et al. 2007; Glausiusz 2010), but also in Europe (Sawusudee et al. 2015; Walles et al. 2016). Because of shell-cleaning issues and legislation, very few of these projects use waste shells from the aquaculture industry as reef restoration substrates. The Billion Oyster Project on Governors Island in New York is one project that links a waste shell collection service around Manhattan restaurants with a reef restoration programme using those collected shells once cleaned and dried (www.billionoysterproject.org – accessed 01/06/2017). Healthy oyster reefs are now well known to promote biodiversity through complex habitat formation (Grabowski & Powers 2004; Soniat et al. 2004; Coen et al. 2007; Kochmann et al. 2008), counteract of eutrophication and other adverse nutrient conditions (Kirby & Miller 2005; Higgins et al. 2011; Kellogg et al. 2013), protect against sea level rise and coastal erosion (Piazza et al. 2005; Walles et al. 2015, 2016). These ecosystem services are not limited to reef building oyster species however. For instance, a study in Sweden has modelled the bioremediatory effects of mussel farming on the west coast of Sweden, suggesting the promotion of mussel populations for the purpose of nutrient and biotoxin assimilation, via a nutrient trading system (Lindahl et al. 2005). Shells, and the complex habitats they form, provide not only a substrate for oyster larvae settlement, but also a hard surface for the attachment of other shelled mollusc species such as mussels and scallops (Ceccherelli & Rossi 1984; Gutierrez et al. 2003; Guay & Himmelman 2004; Diederich 2005). It is also important to consider the role of shell- and living mollusc ecosystem service provision in the context of climate change and ocean acidification (OA), as reviewed by Lemasson et al. (2017). The effects of climate change and OA on the ecosystem services provided by molluscs and shells are likely complex. There are, however, several well-studied negative implications of climate change that could affect ecosystem service provision, including; reduced calcification (Wright et al. 2014), increased shell dissolution (Waldbusser et al. 2011) and impaired filtration rates and feeding (Dove & Sammut 2007), for example. Ecosystem services of molluscs are likely to become more valuable under climate change, and considering that their ability to provide such services may be impaired, there should be even greater emphasis on the need to protect and promote shell and biogenic reefs.

Reviews in Aquaculture (2019) 11, 42–57
© 2018 Wiley Publishing Asia Pty Ltd

Mollusc shell valorisation
Whole waste shells from aquaculture and food industries could provide a suitable substrate for the promotion of bivalve populations, which could then provide a myriad of ecosystem services. The majority of initiatives and studies currently using shell material for ecosystem service provision, however, use trawled shells rather than shells from the aquaculture industry. We suggest the promotion of cleaned waste shell usage in the establishment or re-establishment of shell substrates in coastal and estuarine waters that could benefit from the ecosystem services that CaCO$_3$ shells and healthy bivalve populations provide. In doing so, linking waste valorisation with ecosystem restoration, the sustainability of related aquaculture and food industries can be improved using core circular economy and biomimetic principles.

Summary

In mollusc aquaculture, shell waste remains a barrier to sustainable growth. Shells are majority calcium carbonate, with a small amount of organic matrix. Limestone which is also calcium carbonate is mined in huge quantities globally and refined for numerous purposes, from cement to paper whitening. As such, it might be expected that shells have simple valorisation routes; however, this is not regularly the case. Shell waste aggregation, cleaning and preparation, distance from potential application sites and complex regulations all contribute to difficulties in the valorisation of shell waste from aquaculture. Despite this, there are already a number of well-established markets for shells, as described above: ranging from calcium supplementation in poultry farming, to pH regulation in hobbyist aquarium systems. In addition, there are a number of potential valorisation techniques that have been discussed in scientific literature and beyond, but that have yet to be realised at a viable scale. From the use of shells in eco-friendly road deicer substances, to their use in green roofing structures as a functional drainage layer, it is clear that there are many potential waste shell uses that do not require high-energy processing such as pyrolysis. In the scientific literature, there is a plethora of research suggesting uses for waste shells that require they undergo calcination. This, however, would require a significant amount of energy input that, given the need for sustainable solutions to waste production, would not fit with this principle, and thus have not been addressed in this article. In a different capacity, it is well known that shells are an important component of many marine ecosystems, and it is likely that loss of shells structures has contributed to the loss of important ecosystems globally. With this in mind, this article has addressed the question of whether, in some cases, shells might have more inherent value simply being cleaned and returned to the marine environment rather than processed for more economically targeted reasons. Shells have been utilised in the restoration of natural reef building oyster populations, which then provide a host of ecosystem services including complex habitat and ecosystem promotion, and eutrophication control. Shells can also be used in powdered form to contribute to local alkalinisation techniques, improving the water quality of lakes and small river systems, as well as promoting biodiversity.

It is clear that shells are a potentially valuable commodity and do not require high-energy processing to give them value. Where shells are produced in a significant volume, it should be possible to find an appropriate valorisation strategy for them within a close-enough proximity to make it both sustainably and economically viable. In addition, with the significant cost of proper landfill disposal in many parts of the world, cleaned shells which cannot be used for any applications could be returned to the marine environment in a directed manner, where they can have a myriad of positive effects on the environment. Where regulations control the use of the shell waste, exemptions could be made allow to easier shell utilisation. In the EU, for instance, exemptions have already been applied to their animal by-products regulations for certain well-established shell valorisation techniques such as the use of crushed, cooked and shells in agricultural liming. If mollusc aquaculture is to play an increasingly significant role in the global provision of protein, then it can be expected that there will be a diversification of mollusc products, with more sold in processed form where shells are removed during processing. In such a scenario, shell waste valorisation will be a key concern. In areas of high mollusc production, such as China, shell waste is already an issue, with shell dumps providing an unsightly and odorous nuisance. Therefore, it is important that the way we view shells changes from a nuisance waste product, to a valuable commodity that could provide economic and environmental benefits if utilised correctly.

Acknowledgments

This work is funded as part of the European Union Seventh Framework Programme – Grant No. 605051 – Marie Curie Initial Training Network ‘Calcium in a Changing Environment’ http://www.cache-itn.eu/. The authors would like to thank two anonymous reviews for their comments and suggestions.

References

Kochmann J, Buschbaum C, Volkenborn N, Reise K (2008) Shift from native mussels to alien oysters: differential effects of...

supports green infrastructure with accelerating sea-level rise.
Scientific Reports 5: 1–8.
the Chesapeake Bay oyster population: a century of habitat
destruction and overfishing. Marine Ecology Progress Series
Santamouris M (2014) Cooling the cities – a review of reflective
and green roof mitigation technologies to fight heat island
and improve comfort in urban environments. Solar Energy
103: 682–703.
Sawusdee A, Jensen AC, Collins KJ, Hauton C (2015) Improve-
ments in the physiological performance of European flat oyster
Ostrea edulis (Linnaeus, 1758) cultured on elevated reef
structures: implications for oyster restoration. Aquaculture
Scott ML, Hull SJ, Mullenhoff PA (1971) The calcium require-
ments of laying hens and effects of dietary oyster shell upon
Sickels-taves LB (2016) Understanding historic tabby structures:
Smil V (2013) Making the Modern World: Materials and Demate-
rialization. John Wiley & Sons, Hoboken, NJ.
Soniat TM, Finelli CM, Ruiz JT (2004) Vertical structure and
predator refuge mediate oyster reef development and commu-
nity dynamics. Journal of Experimental Marine Biology and
Su Z, Huang L, Yan Y, Li H (2007) The effect of different sub-
strates on pearl oyster Pinctada martensii (Dunker) larvae set-
UK.
Tamburri MN, Luckenbach MW, Breitburg D, Bonniwell SM
(2009) Settlement of Crassostrea ariakensis larvae: effects of
substrate, biofilms, sediment and adult chemical cues. Journal
Tokesi M, Ota N, Kawai T (2000) A comparative study of mor-
phometry in shell-bearing molluscs. Journal of Zoology 251:
31–38.
Summaries, January 2016 - Stone (Crushed). [Cited 22 Dec 2017.]
Available from URL: https://minerals.usgs.gov/minerals/pubs/
msc/2016/msc2016.pdf
Viriya-empikul N, Krasea P, Puttasawat B, Yoonsuk B, Cholla-
coop N, Faungnawakij K (2010) Waste shells of mollusc and
egg as biodiesel production catalysts. Bioresource Technology
101: 3765–3767.
Waldbuser GG, Steenon RA, Green MA (2011) Oyster shell
dissolution rates in estuarine waters: effects of pH and shell
Walles B, Mann R, Ysebaert T, Troost K, Herman PMJ,
Smaal AC (2015) Demography of the ecosystem engineer
Crassostrea gigas, related to vertical reef accretion and reef
persistence. Estuarine, Coastal and Shelf Science 154: 224–
233.
Walles B, Troost K, van den Ende D, Nieuwhof S, Smaal AC,
Ysebaert T (2016) From artificial structures to self-sustaining
CO₂ uptake performance and life cycle assessment of CaO-
based sorbents prepared from waste oyster shells blended with
PMMA nanosphere scaffolds. Journal of Hazardous Materials
Webber J, Rose D (2011) Forest Research - Pathology Advisory
Note No.11: De-icing salt damage to trees. [Cited 22 Dec 2017.]
Available from URL: https://www.forestry.gov.uk/pdf/
pathology_note11.pdf
to the Planning, Design, and Construction of Landscapes Over
Structure. John Wiley and Sons, Hoboken, NJ.
Wise DL, Augenstein D (1988) An evaluation of the bioconver-
sion of woody biomass to calcium acetate deicing salt. Solar
gigas respond variably to elevated CO₂ and predation by
Morida marginalba. The Biological Bulletin 226: 269–
281.
for Calcium Magnesium Acetate (CMA) production from
Cheese Whey. Applied Biochemistry and Biotechnology 34(35):
569–583.
replacement of sand with dry oyster shell on the long-term
performance of concrete. Construction and Building Materials
Yao Z, Xia M, Li H, Chen T, Ye Y, Zheng H (2014) Bivalve shell:
not an abundant useless waste but a functional and versatile
biomaterial. Critical Reviews in Environmental Science and
Technology 44: 2502–2530.
for aggregate in mortar. Waste Management & Research 22:
158–170.

Appendix Shells from aquaculture: a valuable
biomaterial, not a nuisance waste product
Market value of shells sold online in Europe and North
America from Table 1 (Information correct as of June
2017).

Poultry feed
https://www.jefferspet.com/products/oyster-shell-5lb
2. Valley Vet (USA) – 5 lb – $7.99
https://www.valleyvet.com/ct_detail.html?pgguid=90a
585ec-0049-4572-acf1-05f2bb5293de
3. Agrivite (EU) – 1.5 kg – £3.99
 https://www.viovet.co.uk/Agrivite_Chicken_Lickin_Oystershell_Grit/c18650/
4. Mole Avon (EU) – 2.5 kg – £1.99
 http://www.moleavon.co.uk/johnston-jeff-oyster-grit-25kg/p2000
5. Monster Pet Supplies (EU) – 25 kg – £16.79
 https://www.monsterpetplies.co.uk/bird/chicken-supplies/pettex-oyster-shell-fine-25kg
 http://www.ebay.co.uk/itm/25kg-Oyta-Fine-Oyster-Shell-for-Chickens-Ducks-Quail-and-Caged-Birds-/141768125450
8. Petland (CA) – 15.5 oz – CAD$3.47
 https://www.petland.ca/products/hagen-bird-oyster-shell
9. Mole Avon (EU) – 2.5 kg – £1.99
 http://www.moleavon.co.uk/johnston-jeff-oyster-grit-25kg/p2000
 https://www.viovet.co.uk/Pettex_Pigeon_Grit/c13644/

Pet bird nutrition

 http://www.moleavon.co.uk/johnston-jeff-oyster-grit-25kg/p2000
 https://www.viovet.co.uk/Pettex_Pigeon_Grit/c13644/

Bio-filter medium

11. Dan Shell (EU) – 1000 kg – €390
 http://www.danshells.dk/products/biological-filtering/
12. Specialist Aggregates (EU) – 600 kg – £229.55
 http://www.specialistaggregates.com/natural-whole-cockle-filter-media-p-2049.html?osCsid=db9f22be45a98ba7c3a8c7a4127db09b

Aquarium/pond pH buffer

13. Air Aqua (EU) – 10 L – €22.95
14. Air Aqua (EU) – 5 kg – €19.95

Soil liming

16. Planet Natural (USA) – 50 lb – $15.95
17. Murdoch’s (USA) – 50 lb – $15.99
 http://www.murdoch’s.com/shop/pacific-pearl-oyster-shell/
18. Wilco farm store (USA) – 50 lb – $12.99

Shell aggregates

19. Specialist aggregates (EU) Whole scallop shell – 250 kg – £164.00
20. Specialist aggregates (EU) Whole cockle shell – 500 kg – £219.55 or 200 kg – £100.49
21. Specialist aggregates (EU) – Whole Empress scallop shell – 500 kg – £219.56 or 200 kg – £100.49
22. Specialist aggregates (EU) – Crushed cockle shell – 15 kg – £34.50
23. Specialist aggregates (EU) – Crushed cockle shell – 600 kg – £238.75
24. Dan Shell (EU) – Crushed mussel shell – 1000 kg – €390
 http://www.danshells.dk/products/biological-filtering/