Skip to content. | Skip to navigation

Personal tools

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

You are here: Home / PDFs on demand / Bibliographical References of PDFs on demand / Suspended particulate matter dynamics in a particle framework

Ulf Graewe and Joerg-Olaf Wolff (2010)

Suspended particulate matter dynamics in a particle framework

Environmental Fluid Mechanics, 10(1-2):21-39.

Suspended particulate matter (SPM) dynamics in ocean models are usually treated with an advection-diffusion equation for one or more sediment size classes coupled to the hydrodynamical part of the model. Numerical solution of these additional partial differential equations unavoidably introduces numerical diffusion, i.e. in the case of sharp gradients the possible occurrence of artificial oscillations and non-positivity. A Lagrangian particle-tracking model has been developed to simulate short-term SPM dynamics. Modelling individual sediment particles allows a straightforward physical interpretation of the processes. The tracking of large numbers of individual and independent particles (up to 25 million in total in a single sediment class) can be achieved on high performance computer clusters, due to efficient parallelisation of particle tracking. The movement of the particles is described by a stochastic differential equation, which is consistent with the advection-diffusion equation. Here, the concentration profile is represented by a set of independent moving particles, which are advected according to the 3D velocity field, while the diffusive displacements of the particles are sampled from a random distribution, which is related to the eddy diffusivity field. To account for erosion a new parameterisation is proposed. Three numerical particle tracking schemes (EULER, MILSTEIN and HEUN) are presented and validated in idealised test cases. Finally, the particle tracking algorithms are applied to a realistic scenario, a severe winter storm in the East Frisian Wadden Sea (southern North Sea). The comparison with observations and an Eulerian SPM transport model seems to indicate a somewhat better fidelity of the Lagrangian approach.

random-walk models, Stochastic processes, Random walk, motion, sediment transport, southern north-sea, simulate, performance, mixed-layer, SPM transport, residence time, frisian wadden sea, Lagrangian particles
WOS:000274197800003
Year

1875 1876 1877 1878 1879
1880 1881 1882 1883 1884
1885 1886 1887 1888 1889
1890 1891 1892 1893 1894
1895 1896 1897 1898 1899

1900 1901 1902 1903 1904
1905 1906 1907 1908 1909
1910 1911 1912 1913 1914
1915 1916 1917 1918 1919
1920 1921 1922 1923 1924

1925 1926 1927 1928 1929
1930 1931 1932 1933 1934
1935 1936 1937 1938 1939
1940 1941 1942 1943 1944
1945 1946 1947 1948 1949

1950 1951 1952 1953 1954
1955 1956 1957 1958 1959
1960 1961 1962 1963 1964
1965 1966 1967 1968 1969
1970 1971 1972 1973 1974

1975 1976 1977 1978 1979
1980 1981 1982 1983 1984
1985 1986 1987 1988 1989
1990 1991 1992 1993 1994
1995 1996 1997 1998 1999

2000 2001 2002 2003 2004
2005 2006 2007 2008 2009
2010 2011 2012 2013 2014
2015 2016 2017 2018 2019
2020 2021 2022 2023 2024

 
e-ressources

 

PDFs on demand
 

 

 

RBINS private PDFs