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a b s t r a c t 

The quasi-Monte Carlo (QMC) method was enhanced to solve the population balance model (PBM) in- 

cluding aggregation and fragmentation processes for simulating the temporal evolutions of characteristic 

sizes and floc size distributions (FSDs) of cohesive sediments. Ideal cases with analytical solutions were 

firstly adopted to validate this QMC model to illustrate selected pure aggregation, pure fragmentation, and 

combined aggregation and fragmentation systems. Two available laboratory data sets, one with suspended 

kaolinite and the other with a mixture of kaolinite and montmorillonite, were further used to monitor 

the FSDs of cohesive sediments in controlled shear conditions. The model results show reasonable agree- 

ments with both analytical solutions and laboratory experiments. Moreover, different QMC schemes were 

tested and compared with the standard Monte Carlo scheme and a Latin Hypercube Sampling scheme to 

optimize the model performance. It shows that all QMC schemes perform better in both accuracy and 

time consumption than standard Monte Carlo scheme. In particular, compared with other schemes, the 

QMC scheme using Halton sequence requires the least particle numbers in the simulated system to reach 

reasonable accuracy. In the sensitivity tests, we also show that the fractal dimension and the fragmenta- 

tion distribution function have large impacts on the predicted FSDs. This study indicates a great advance 

in employing QMC schemes to solve PBM for simulating the flocculation of cohesive sediments. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Fine-grained cohesive sediments abound in open water systems 

uch as estuaries, reservoirs, and coastal waters. The transport of 

ohesive sediments has great impacts on bed morphology, wa- 

er quality, and estuarine circulations ( Maggi, 2005 ; Edmonds and 

lingerland, 2010 ; Geyer and MacCready, 2014 ; Burchard et al., 

018 ). One significant characteristic of cohesive suspended sedi- 

ents is flocculation, which is the process where sediment par- 

icles go through aggregation and fragmentation simultaneously to 
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orm clusters (flocs). Accurate modeling flocculation of fine-grained 

ediments is still a challenge since the process is influenced by 

hysical (e.g., turbulence intensity and sediment concentration), 

iological (e.g., Extracellular Polymeric Substances), and chemi- 

al (e.g., mineralogical composition, PH value, and salinity) effects 

 Tolhurst et al., 1999 ; Winterwerp, 1998 ; Tran and Strom, 2019 ;

zhikodan and Yokoyama, 2021 ; Fall et al., 2021 ). 

Over the past decade, different kinds of flocculation models 

ave been developed to track the sediment particle quantities. The 

rst is the simplified Lagrangian model (sometimes also known as 

he floc growth model) developed by Winterwerp (1998) to track 

he evolution of a characteristic size under shear-dominated envi- 

onments. Later, the constant fractal dimension ( Maggi et al., 2007 ; 

helifa and Hill, 2006 ) and yield strength ( Son and Hsu, 2009 ) in

https://doi.org/10.1016/j.watres.2021.116953
http://www.ScienceDirect.com
http://www.elsevier.com/locate/watres
http://crossmark.crossref.org/dialog/?doi=10.1016/j.watres.2021.116953&domain=pdf
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he Winterwerp’s model were enhanced as a function of floc size, 

nd the breakage parameter was connected with the Kolmogorov 

icroscale ( Kuprenas et al., 2018 ) to better address the effects of 

uspended sediment concentration on flocculation. This low-cost 

ingle class model can be easily adopted in real environments (e.g., 

hang et al., 2020 ); however, some properties of flocculation such 

s the effects of differential settling and the variations of bi- or 

ulti-peak floc size distributions (FSDs) cannot be dealt with us- 

ng the Winterwerp’s model. The second flocculation model is the 

opulation balance model (PBM), which is a transport model based 

n an integro-partial differential equation that accounts for the 

umber density of flocs with particular size at any location and 

ime in a system. Although PBM has been widely used in many 

elds (e.g., aerosol, droplet, milling, and granulation), only few 

tudies applied it to simulate FSDs for fine-grained cohesive sed- 

ments in natural environments (e.g., Maggi et al., 2007 ; Lee et al., 

011 ; Shen and Maa, 2015 , 2016 , 2017 ). Note that although the

interwerp’s model could be sometimes treated as a one-class 

BM, here it is classified separately since the model cannot track 

he multi-modal distributions. Most of the other flocculation mod- 

ls mainly focused on the details of forces governing particle–

article interactions. For example, Zhang and Zhang (2011) ex- 

ended the Lattice Boltzmann Model by adding fluid-solid bound- 

ry using bounce-back method to simulate the FSDs of cohesive 

ediments considering hydrodynamics and attractive van der Waals 

orces during differential settling, and their model was later ap- 

lied under shear conditions as well ( Zhang et al., 2013 ). In ad-

ition, Zhao et al. (2020) investigated the Stokes drag, lubrication, 

ohesive, and direct contact forces between particles, which per- 

ormed well in the transient stage of flocculation in a conceptu- 

lly simple and small cellular flow set-up. These models often con- 

ume exorbitant memory and computational resources, which lim- 

ts themselves on studying large domains. 

Among the above mentioned models, the population balance 

odel (PBM) outperforms other models for its advantages in the 

bility of tracking FSDs and describing various flocculation mech- 

nisms. Several numerical methods for solving PBM have been 

roposed, including discretization methods ( Kumar and Ramkr- 

shna, 1996 ; Bertin et al., 2016 ; Kumar and Kaur, 2016 ; Singh et al.,

019 ), moment methods ( McGraw, 1997 ; Shen and Maa, 2015 , 

016 , 2017 ; Passalacqua et al., 2018 ; Li et al., 2019 ) and Monte

arlo (MC) methods ( Khelifa and Hill, 2006 ; Xu et al, 2014 ;

ee et al., 2015 ; Das et al., 2020 ). The first approach, i.e., the dis-

retization method, converts the PBM to a series of ordinary dif- 

erential equations by discretizing the continuous number den- 

ity function into several pivots to track the particle quantities 

 Singh et al., 2019 ). The disadvantage of this method is the require-

ent of large computing resources to obtain a desirable accuracy 

specially for cases with wide range of sizes ( Shiea et al., 2020 ).

he second approach, the methods of moments, was developed as 

n approximated solution that tracks the moments of the number 

ensity function and then reconstructs the number density func- 

ion. The process of reconstructing the FSDs from their moments, 

owever, may cost expensively in computing resource ( Shen and 

aa, 2015 , 2016 ; Li et al., 2019 ; Wang et al., 2020 ). The third ap-

roach, the Monte Carlo (MC) methods, deals with physical pro- 

esses such as aggregation and fragmentation as discrete events by 

sing probabilistic tools. With MC methods, one can conveniently 

btain the time evolution of particle systems by using an array 

ontaining the particle size to represent a sample of the whole sys- 

em and simulating the particulate behaviors, which makes it suit- 

ble for extension to multivariate (e.g., size, density, and biomass 

raction) problems ( Su et al., 2009 ; Zhao et al., 2011 ; Xu et al.,

014 , Kotalczyk and Kruis, 2017 ). This capability of easy extension 

or finding other physical properties is our main motivation to use 

he MC method. 
t

2 
The MC methods for PBM can be classified into event-driven 

C and time-driven MC by time discretization. In event-driven MC 

 Garcia et al., 1987 ), a specific event (e.g., aggregation and frag- 

entation) is first selected according to the probability that is pro- 

ortional to the rate of its occurrence. The time increment is calcu- 

ated for each event during the simulation. In the time-driven MC 

 Liffman, 1992 ), a specified time is first given less than the mini-

um time scale of all the possible events, and then all possible oc- 

urring events proceed within this pre-specified time. MC methods 

an also be divided into constant-volume MC and constant-number 

C according to the simulated volume. The former keeps the sys- 

em in a constant volume and thus changes the total number of 

articles but conserving the mass ( Lin et al., 2002 ), while the lat- 

er adjusts the volume to keep the particles number unchanged. 

ith the constant-volume MC, either the statistic error increases 

ith time because of the reduction in particle number for aggre- 

ation events, or the computational cost increases due to the in- 

reasing particle number for fragmentation events. To balance the 

imulation efficiency and accuracy, the constant-number MC was 

eveloped to keep the particle number unchanged during the sim- 

lation by continuously adjusting the sampling volume ( Tang and 

atsoukas, 1997 ; Smith and Matsoukas, 1998 ). 

The MC methods have rarely been applied to solve PBM 

or simulating the time evolution of FSDs for suspended sedi- 

ents flocculation, except for some early studies by Khelifa et al. 

20 05 , 20 06 ). Although the MC methods have their superior 

iscrete nature, the convergence rate of standard MC method 

an often be very slow, which costs more computational re- 

ources and time, especially for multivariate and high-dimensional 

roblems ( Caflisch, 1998 ; Wang and Sloan, 2011 ; Singhee and 

utenbar, 2010 ; Dick et al., 2013 ). Thus, a quasi-Monte Carlo 

QMC) method was later developed by using quasi-random num- 

ers (namely the low-discrepancy sequences) instead of standard 

C’s pseudorandom numbers ( Radovi ́c et al., 1996 ; Sobol, 1998 ; 

ou et al., 2019 ) to improve the efficiency and accuracy of stan- 

ard MC. In this way, the QMC scheme for solving PBM has an 

ptimal combination of high accuracy and efficiency. 

The objective of this study is to simulate the temporal evo- 

ution of FSDs and characteristic sizes (e.g., mean size and me- 

ian size) of fine-grained suspended sediments including aggrega- 

ion and fragmentation using a modified quasi-Monte Carlo based 

BM. In order to check the effectiveness of the model, data from 

1) three analytical solutions given by Scott (1968) , Ziff and Mc- 

rady (1985) and McCoy and Madras (2003) including pure aggre- 

ation, pure fragmentation, and combined aggregation and frag- 

entation systems, respectively, and (2) two laboratory experi- 

ental results from Tran and Strom (2017) and Maggi et al. (2002 , 

007 ) are used for validations. Furthermore, the effectivity and ef- 

ciency of different QMC schemes are tested and compared with 

tandard MC scheme to find the optimal model performance. The 

ensitivities on selected parameters are also discussed in order to 

nvestigate the model behavior. 

This paper is organized as follows. Section 2.1 reviews the 

BM model and explains the selection of inner functions in PBM. 

ection 2.2 presents the QMC schemes and describes the floccula- 

ion model. The model is thus calibrated and validated in section 3 , 

ith three analytical solutions and two laboratory experimental 

ata sets. In the following, the discussion and conclusions are de- 

ivered in Section 4 and Section 5 respectively. 

. Flocculation model 

.1. Population balance model and sediment flocculation dynamics 

The PBM model, neglecting the advection, diffusion and settling 

erms, is used to characterize aggregation and fragmentation dy- 
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amics to model the time evolutions of number density of flocs 

ith size D . The size-based PBM in a continuous form can be writ- 

en as ( Marchisio et al., 2003b ; Kariwala et al., 2012 ; Shen and

aa, 2016 ): 

∂n ( D, t ) 

∂t 
= 

D 

2 

2 

D 

∫ 
0 

β
((

D 

3 − η3 
) 1 

3 
, η

)
· α

((
D 

3 − η3 
) 1 

3 
, η

)
(
D 

3 − η3 
) 2 

3 

·

n 

((
D 

3 − η3 
) 1 

3 
, t 

)
· n ( η, t ) dη − n ( D, t ) 

∞ 

∫ 
0 

β( D, η) ·

α( D, η) · n ( η, t ) dη + 

∞ 

∫ 
L 

a ( η) · b ( Dη) ·

n ( η, t ) dη − a ( D ) · n ( D, t ) (1) 

here n ( D, t ) is the number density function of particles with size 

 at time t , β( D, η) is the collision frequency for two particles of

ize D and η that collide to form a particle with size ( D 

3 + η3 ) 1 / 3 , 

( D, η) is the collision efficiency, a (D ) is the fragmentation fre- 

uency for particles with size D , and b( Dη) is the fragmentation 

istribution function that includes information on the daughter 

articles produced by fragmentation. The first term on the right- 

and side of Eq. 1 is the birth rate of flocs with size D due to ag-

regation of smaller particles, the second term is the death rate of 

ocs with size D due to aggregation with other particles, the third 

erm is the birth rate of flocs with size D due to fragmentation of 

igger flocs with size η, and the last term is the death rate of flocs

ith size D due to their own fragmentation. 

The collision efficiency α describes the probability of success- 

ul aggregation after collision between flocs. It is often used in the 

orm of a calibration parameter (e.g., Mietta et al., 2008 ; Shen and 

aa, 2015 ; Verney et al., 2011 ). The collision frequency β be- 

ween sediment particles with size D i and D j in natural environ- 

ents consists of three mechanisms: Brownian motion, differen- 

ial settling, and turbulent shear. These terms can be written as 

 Smoluchowski, 1917 ; Maggi, 2005 ; Shen and Maa 2015 ) 

i, j = β( BM ) 
i, j 

+ β( DS ) 
i, j 

+ β( T S ) 
i, j 

(2) 

n which 

rownian motion β( BM ) 
i, j 

= 

2 

3 

KT 

μ

(
D i + D j 

)2 

D i D j 

(3) 

ifferential settling β( DS ) 
i, j 

= 

π

4 

(
D i + D j 

)2 ∣∣ω s,i − ω s, j 

∣∣ (4) 

urbulent shear β( T S ) 
i, j 

= 

G 

6 

(
D i + D j 

)3 
(5) 

here K is the Boltzmann constant, T is the absolute temperature, 

is the dynamic viscosity of the fluid, ω s,i and ω s,j are the set- 

ling velocities of particles i and j , and G is the shear rate. Al-

hough Brownian motion is commonly known as a negligible factor 

n estuaries region ( McCave, 1984 ; Winterwerp, 1998 ; Shen et al., 

018b ), it is considered in this study for a complete expression. 

The fragmentation frequency function a ( D ) accounts for the dis- 

uption of flocs by stress produced by fluid shear and collision be- 

ween flocs. The relative importance of these two influences are 

till debatable and not well understood ( Khelifa and Hill, 2006 ; 

hen and Maa, 2015 ). Models for floc fragmentation often employ 

omplicated functions with fitting parameters ( Winterwerp, 1998 , 

999 ; Maggi et al., 2007 ; Shen and Maa, 2015 , 2017 ). It is impor-

ant to note that the probability of fragmentation of particles can 

e easily related to the floc size ( Khelifa and Hill, 2006 ). A com-

on kinematic approach regarding floc breakage defines a maxi- 

al floc size D max instead of specifying the mechanism for frag- 

entation, which assumes that overlarge (i.e., larger than D max ) 
3 
ocs always tend to break into fragments. The fragmentation dis- 

ribution function b( Dη) describes the number and size of daugh- 

er flocs after fragmentation. The assumptions used in this func- 

ion are the discrete (e.g., binary breakup with mass ratio 1:1 

r ternary breakup with mass ratio 1:1:2, see Spicer and Pratsi- 

is, 1996 ; Shen, 2015 ) and the continuous form (e.g., Gaussian dis- 

ribution). 

.2. Monte Carlo and Quasi-Monte Carlo 

In this study, the constant-number MC method is applied 

n order to keep constant statistic accuracy over the simulation 

 Lin et al., 2002 ). As described in Fig. 1 , random number genera-

ion (RNG) is the first step to produce a series of random numbers. 

he input parameters are the particles number ( N ), the maximum 

ize ( D max ) of flocs, the turbulent energy dissipation rate, and the 

ensities of solid particles ( ρs ) and of the fluid ( ρw 

). The initial

ize distribution (ISD), fractal dimension ( nf ), and the fragmenta- 

ion distribution function were selected before the events module. 

he initial particle array is filled randomly with a specific size dis- 

ribution (e.g., Gaussian distribution and uniform distribution). The 

ractal dimension ( nf ) of flocs are given by ( Maggi et al., 2007 ) 

f = 3 ·
(

D f 

D p 

)δ

(6) 

here D p is the primary particle size, and δ = −0 . 1 is used as

uggested by Maggi et al. (2005) . The floc size, D f , is converted

o component particle numbers, N f , to better track and conserve 

he mass, similar as proposed by Maggi (2005) and Khelifa and 

ill (2006) : 

 f = 

(
D f 

D p 

)n f 

(7) 

The next step is choosing the aggregation or fragmentation 

vents. Since little is known about the occurrence rate of the frag- 

entation, the following probability P frag of floc breakage based on 

he number of overlarge flocs (larger than D max ) is used as sug- 

ested by Khelifa and Hill (2006) : 

 frag = { 
0 , n b = 0 

0 . 5 , n b = 1 

1 , n b > 1 

(8) 

here n b is the number of overlarge flocs. The aggregation proba- 

ility is P agg = 1 − P frag since the null event is not considered in the 

imulation. A random number r 1 is taken from the random num- 

er series which is produced before simulating. The aggregation 

vent is selected if P frag < r 1 , otherwise the fragmentation event is 

elected. 

The acceptance-rejection (AR) method is applied in the imple- 

entation of each selected event. Two random particles i and j are 

elected and their aggregation kernel A ij = αi , j • β i , j is calculated by 

qs. 2 ∼5 with a constant α = C 1 for the aggregation event. Here, 

he collision efficiency α is set as unity, which raises the floccu- 

ation rate while reasonably maintaining the feature of floc size 

istributions ( Khelifa and Hill, 2006 ). This selection based on the 

ssumption that α does not significantly depend on floc proper- 

ies (e.g., size, shape, and biomass fraction) in our cases; never- 

heless, the α shall be more challenging in QMC models if the 

iomass fraction is highlighted in natural waters ( Kiørboe et al., 

990 ; Lai et al., 2018 ). A random number r 2 is taken from the

andom number series produced before the simulation. The pair 

f selected particles i and j would aggregate to a floc containing 

 fi + N fj component particles ( Fig. 1 ) if the aggregation kernel A ij 

atisfies the following condition ( Khelifa and Hill, 2006 ; Zhao and 

heng, 2013 ; Kotalczyk and Kruis, 2017 ): 

 2 ≤ A i j / A max (9) 
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Fig. 1. The flowchart of the QMC model for cohesive sediment flocculation due to aggregation and fragmentation. 
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here A max is the maximum of the aggregation kernel over all pos- 

ible pairs. After a successful aggregation, the new formed floc is 

tored in the position of particle i . Then the position vacated by 

article j is occupied by a duplicated particle of randomly selected 

article k . If Eq. 9 is not satisfied, a new pair of particles is selected
4 
nd the procedure is repeated until a pair of particles successfully 

ggregates. 

Note that the calculation of the maximum aggregation kernel 

 max requests a double looping over all pairs of particles in each 

tep, which computes expensively N ( N -1)/2 times for every try. A 
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imple constant maximum kernel may be used to reduce the cal- 

ulation time as proposed by Smith and Matsoukas (1998) , which 

s computationally feasible but not efficient in practical application 

or cohesive sediments. Kruis et al. (20 0 0) introduced a so-called 

ookkeeping strategy that calculates the aggregation kernels of all 

airs of particles first and only updates the kernel of which parti- 

le size is changed after each event. Eibeck and Wagner (2001) and 

u (2014) proposed a differential weight MC (DWMC) which used 

he majorant of the aggregation kernel to calculate the A max by 

 single looping over all particle pairs instead of double loop- 

ng. Although both the bookkeeping strategy and DWMC cost less 

PU time than a traditional double looping strategy, they still con- 

ume much time when the particle number N is large. Khelifa and 

ill (2006) proposed an automatically adjusted correction factor C F 
o estimate the A max by multiplying with the kernel of the mean 

ize of flocs, which is validated with in-situ data of FSDs of cohe- 

ive sediments. Thus, the A max is estimated as 

 max = C F A mean (10) 

ith 

 F = 

4 n a 

n r + n a 
(11) 

here A mean is the aggregation kernel of flocs with mean size, and 

 a and n r are the number of accepted and rejected tries respec- 

ively during each aggregation event. It is critical to note that the 

inear variation of C F tends to remain the ratio n a : n r close to one

nd the calculation of A max in Eq. 10 implies an assumption that 

 max ∼ 2 A mean in the simulation. 

In the case of a fragmentation event, a particle i is selected ran- 

omly from the array. The acceptance-rejection (AR) method is also 

sed to test the breakup probability with B i = N fi / N max . A random

umber r 3 from the pre-produced series is taken. If B i ≥ r 3 , the 

article i breaks into daughter flocs. Taking binary fragmentation 

s an example ( Fig. 1 ), a random number r 4 is taken from the se-

ies produced already. The particle i breaks into two fragments i ’ 

ith r 4 �N fi component particles and i ′′ with (1 −r 4 ) �N fi component 

articles as follows: 

 

N f i ′ = r 4 N f i 

N f i ′′ = ( 1 − r 4 ) N f i 
(12) 

The daughter particle i ’ is placed in the position of particle i , 

hile the particle i ’’ replaces a particle in the system stochastically. 

After each step of aggregation or fragmentation, those key vari- 

bles such as nf, D f , N f of changed particles will be updated. The

imulation will be terminated when equilibrium has been reached. 

he FSDs and the characteristic sizes can be directly computed 

rom the particle array. 

Although the standard Monte Carlo method using pseudoran- 

om numbers shows an advantage of discrete nature for solv- 

ng PBM, it needs to be enhanced due to the huge computation 

ost. Thus, quasi-Monte Carlo schemes are developed to improve 

he performance of standard MC by substituting the pseudoran- 

om numbers by quasi-number sequences ( Singhee and Ruten- 

ar, 2010 ; Dick et al., 2013 ; Hou et al., 2019 ), namely the deter-

inistic low-discrepancy sequences, which show more uniformity 

n distribution. Two different quasi-number sequences, the Halton 

equence ( Halton, 1960 ) and the Sobol’ sequence ( Sobol, 1967 ), will

e used in this numerical study. The Halton sequence is the first 

lass of low-discrepancy sequences constructed in 1960 by Halton, 

hich was frequently selected to substitute pseudorandom num- 

ers in standard MC due to its good performance and simplicity 

 Wang and Hickernell, 20 0 0 ; Hess and Polak, 2003 ; Mascagni and

hi., 2004 ; Chi et al., 2005 ). The Sobol’ sequence belongs to a new

lass of sequences called LP τ -sequences introduced in 1966, which 

as additional uniformity properties and can be computed in a “su- 
5 
erfast” way using logical operations ( Sobol, 1998 ; Burhenne et al., 

011 ). 

Besides, the Latin Hypercube Sampling (LHS) sequence 

 McKay and Beckman, 1979 ) as a classic low-discrepancy se- 

uence is also tested. The LHS is suggested as a particular kind of 

tratified sampling to improve the efficiency of different sampling 

ethods and used to be an alternative of standard MC numbers 

n many research fields such as finite element analysis, structural 

eliability, and statistical circuit analysis (e.g., Keramat and Kiel- 

asa, 1997 ; Olsson et al., 20 02 , 20 03 ; Singhee and Rutenbar, 2010 ).

In order to better assess the uniformity of different sequences, 

0 0 0 points generated by each of four random number sequences 

re scatter-plotted in Fig. 2 . One can easily see that the pseudo- 

andom number and LHS sequences has more gaps and clumps 

han the other two sequences. In other words, the Halton sequence 

nd the Sobol’ sequence distribute visually more uniform than the 

thers. For the purpose of qualifying the uniformity of these se- 

uences, we define an area ratio index for the scatter-plot ( Fig. 2 )

s 

 a = 

A seq 

A all 

(13) 

here A seq is the summed area in the image taken by all the mark- 

rs of each points sequence, A all is the whole area enclosed by the 

oordinates x = 0 to 1 and y = 0 to 1 (in this case). The value of

ndex r a is between 0 to 1, and r a = 1 denotes that the sequence

s uniformly distributed. In this study, the radius of each marker 

s empirically set to 20 pounds, and thus A seq can be calculated 

sing image processing tools. As shown in Fig. 2 , the area ratio 

ndex r a shows that not only the pseudorandom number series 

s less geometrically uniform than the low-discrepancy series but 

he uniformity of the Sobol’ and Halton sequences are also of a 

igher level than others. The efficiency and accuracy of all four 

equences-based MC method to solve PBM will be discussed later 

n Section 4.1 . 

. Case study 

In the following cases, all simulations were performed with 

 = 30,0 0 0 particles, which will be discussed in more details in 

ection 4 . Simulations were run for 5 × 10 5 MC steps. Temperature 

nd the dynamic viscosity of the water were kept constant at 20 ◦C 

nd 0.001 Pa �s. The density of the water and component particles 

ere set to 1020 kg/m 

3 and 2650 kg/m 

3 respectively. 

.1. Comparison with selected analytical solutions 

Case I: Pure aggregation 

Based on the assumption that aggregation between particles 

s totally at random, a constant aggregation kernel is considered, 

hich indicates that each pair of selected particles ( i, j ) is always

ggregated after collision. With the simple assumption of Eq. 14 , 

i, j = β0 (14) 

he analytical solution of the PSD for this case is given by 

cott (1968) as 

 ( D, t ) = 

12 N 0 D 

2 

v 0 ( T a + 2 ) 
2 

e 
− 2 D 3 

v 0 ( T a +2 ) (15) 

The initial particle distribution is specified as T a = 0 in Eq. 16 

 ( D ) = 

3 N 0 

v 0 
D 

2 e 
− D 3 

v 0 (16) 

n which N 0 is the initial total number of particles per unit vol- 

me (in units of m 

−3 ), v 0 is the mean volume of the particles at

he beginning (in units of m 

−3 ), and T a = N 0 β0 t is dimensionless

ime. 
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Fig. 2. Scatter plot of different sam pling schemes with each of 10 0 0 points. Top left is the results of pseudorandom (standard MC) approach, top right is Latin hypercube 

sampling, bottom left is Halton sequence, and bottom right is Sobol’ sequence. 
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Since the constant-number MC and the event-driven MC were 

pplied in this study, the inter-event time need to be computed 

hile running the model. Smith and Matsoukas (1998) gave the 

ime increment of aggregation as 

t κ = 

2 τc 〈
βi j 

〉 · 1 

N 

·
(

N 

N − 1 

)κ

(17) 

ith 

c = 1 / βC C 0 (18) 

here �t κ is the time increment (in units of s), κ is the counter of 

uccessful aggregation events, τ c is the characteristic aggregation 

ime, βC is the dimensional part of the aggregation kernel (in units 

f m 

3 /s) which equals to β0 in this case, and C 0 is total particle

umber concentration at the beginning. In addition, <β ij > is the 

nsemble average kernel, which can be written as a discrete form, 

amely 

βi j 

〉
= 

∑ N 
i 

∑ N 
j 
 = i βi j 

N ( N − 1 ) 
(19) 

All of the constants are selected the same as those of ear- 

ier researches on the purpose of comparing the model results 

ith these earlier studies. For instance, C 0 = N 0 = 1, v 0 = 1, and

β ij > = βC = β0 = 1 are used in this study to match those of

hen and Maa (2016) . Note that the analytical solution is a gen- 

ral formulation, the units of those parameter such as D, N 0 and 

 in Eq. 15 ∼16 are not important and only require consistency. 
0 

6 
he cumulative time t can be derived from Eq. 17 as 

 = 

κ∑ 

κ=1 

�t κ = 2 

((
N 

N − 1 

)κ

− 1 

)
(20) 

Since the initial particle size distribution cannot be fitted per- 

ectly with the discrete character of Monte Carlo method, the ini- 

ial FSD calculated by analytical solution is divided into 1500 size 

lasses and fitted approximately with N = 30,0 0 0 particles. In or- 

er to simplify the computation, the particle size at the peak con- 

entration at t = 0 is selected as the primary particle size, i.e., 

 p = 0.87 (in arbitrary length units), as inputs of the model in this 

ase. 

The predicted and analytical FSDs fit well with at t = 0, 10, 20, 

0, 100, 200, and 300 s ( Fig. 3 ). One can easily calculate the arith-

etic mean size (mean of number-based FSD) of the analytical so- 

ution given as ( Shen and Maa, 2016 ) 

 mn = 

∫ ∞ 

0 Dn ( D, t ) dD 

∫ ∞ 

0 n ( D, t ) dD 

(21) 

y integral calculation. The simulated mean size also matches well 

ith those given by analytical solution of the FSD ( Fig. 3 ). 

To better evaluate the progress of aggregation of a system, 

archisio et al. (2003a) , gave an index I a = 1 – m 0 ( t )/ m 0 (0) to show

he degree of aggregation, and Scott (1968) gave the analytical so- 

ution for all the moments, as 

 k ( t ) = m k ( t = 0 ) ·
(

2 

2 + N 0 β0 t 

)1 − k 
3 

(22) 
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Fig. 3. Time evolution of (a) normalized PSDs and (b) mean sizes for the pure aggregation event with a constant aggregation kernel (Case Ⅰ ) 
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here m k ( t ) is the k th moments of FSD at time t . In this case,

 0 (0) = 

∞ 

∫ 
0 

n ( D, 0 ) dD = 1. Here I a = 0 indicating no aggregation, and

 a = 1 denotes aggregation progresses in full pace. The relative error 

or mean size between simulated and the analytical result is less 

han 13% even at t = 10 0 0 s, and the calculated I a = 99.8% for the

ystem at that time indicates that aggregation is still in progress 

ith full pace. 

Case II: Pure fragmentation 

We consider the population balance model for a power breakup 

ernel as 

 ( D ) = a 0 D 

3 (23) 
7 
here a 0 = 1 together with a uniform fragmentation distribution 

iven by Su et al. (2008) as 

 ( Dλ) = 

(
6 D 

2 
)

λ3 
, 0 < D < λ (24) 

Limited by the nature of discretion of MC method, the chosen 

oc will break into two classes j and k . Each of that includes two

aughter flocs of the same size. The size of daughter flocs is de- 

ided by a random number r 4 as 

 

N f j1 = N f j2 = r 4 N f i 

N f k 1 = N f k 2 = N f i ( 1 − 2 r 4 ) / 2 

(25) 

The time interval �t κ of the counter of successful fragmenta- 

ion events κ , is given by Tang and Matsoukas (1997) as 

t κ = 

1 

〈 K i 〉 ·
(

1 − M κ

M κ−1 

)
(26) 
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Fig. 4. Time evolution of (a) normalized PSDs and (b) mean sizes for the pure fragmentation event with a power law fragmentation kernel. (Case Ⅱ ) 
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here < K i > = 

N ∑ 

i 

K i /N is the mean fragmentation rate, and M κ−1 

nd M κ are the average mass before and after the κ fragmentation 

vent. In order to reduce the computational resource, the average 

ass is estimated by the mass of the particle with average size. 

The analytical solution of the FSD was given by Ziff and Mc- 

rady (1985) with the power initial distribution ( Eq. 16 ) for this 

ure fragmentation case as follows 

 ( D, t ) = 

3 D 

2 N 0 

v 0 
( 1 + a 0 v 0 t ) 2 e −

D 3 

v 0 ( 1+ a 0 v 0 t ) (27) 

In this case, we considered N 0 = 1 and v 0 = 1 following 

hen and Maa (2016) . It can be seen in Fig. 4 that all of FSDs

t selected time and mean size obtained by model coincide with 

he analytical solution. The mean size and the peak size decrease 

uickly with the progression of fragmentation in the first ten sec- 

nds and the rate of reduction is slowing down with time. In addi- 

ion, the maximum relative errors of mean size between analytical 

olution and the MC model at selected time is less than 9%. 
8 
One should be aware that Case I and Case II are rarely possi- 

le for cohesive sediments in natural waters, since aggregation and 

ragmentation are often co-existing. Flocs do not unlimited grow 

r decay. But these two cases were simulated to show that the 

MC model works well under pure aggregation and pure fragmen- 

ation conditions, as pre-steps to validate true cohesive sediment 

ases. The results of Case I and Case II illustrate that the constant- 

umber QMC scheme, compared to the previous constant-volume 

MC scheme, maintains stable statistical accuracy when particles 

ggregate and requires reasonable memory when particles break 

p. 

Case III: Combined aggregation and fragmentation 

For the combined aggregation and fragmentation case, 

cCoy and Madras (2003) obtained a solution of the FSD for 

 constant aggregation kernel ( Eq. 14 with a constant β0 ), a 

ower breakage kernel ( Eq. 23 with a constant a 0 ), a uniform 

ragmentation distribution function (Eq. 24 ∼25), and an exponent 
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Fig. 5. Time evolution of (a) normalized PSDs and (b) mean sizes for the combined aggregation and fragmentation events with a constant aggregation kernel and a power 

law fragmentation kernel. (Case Ⅲ ) 
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nitial distribution ( Eq. 16 ) with the analytical FSD given by 

 ( D, t ) = 

3 N 

2 
0 

v 0 
D 

2 [ �( T a ) ] 
2 e 

− N 0 
v 0 

D 3 �( T a ) (28) 

nd the total number fraction at T a follows 

( T a ) = 

�( ∞ ) ·
[
1 + �( ∞ ) · tanh 

(
�( ∞ ) · T a 

2 

)]
�( ∞ ) + tanh 

(
�( ∞ ) · T a 

2 

) (29) 

here �(∞ ) = ( 2 a 0 v 0 N 0 / β0 ) 
0 . 5 / N 0 . 

The time increment of a chosen event is calculated by 

q. 17 and Eq. 26 . Fig. 5 presents the comparison of FSD and the

ean size between the analytical solution and the model with 

hose constants selected as β0 = 100 in Eq. 14 , a 0 = 1 ×10 −6 in

q. 23 , and N 0 = 1, v 0 = 100 in Eq. 26 ( Shen and Maa, 2016 ). The

ystem reached an equilibrium state under the selected conditions 

fter around fifty seconds. It can be observed that the model re- 

ults at all time match quite well with the analytical solution. The 

ggregation process plays a leading role in the first 10 seconds and 

he mean size increases quickly. Then the fragmentation processes 

tart to occur more frequently and the system reaches a steady 

tate. 

.2. Comparison with experimental data 

Case IV: Tran’s mixing chamber experiment 
9 
Tran and Strom (2017) conducted a laboratory experiment to 

xplore the interaction between clays and silts under turbulent 

hear conditions. The experiments were carried out in a mixing 

hamber of 27.5 × 27.5 × 25 cm ³, in which a variable speed pad- 

le mixer was set to generate different magnitudes of turbulent 

hear. The pure clay sample consisted of a mixture of 80% kaolin- 

te and 20% montmorillonite to mimic estuarine mud ( Keyvani and 

trom, 2014 ) and the concentration was maintained constant at 

00 mg/L. Floc images were recorded by a camera system with 

 LED in a waterproofed housing placed inside the mixing tank. 

he field of camera view was 2.4 × 1.4 mm ² with an image resolu- 

ion of 1.3 μm/pixel. The pure clay suspension was sonicated for 

5 min to break down large clay aggregates and to obtain an aver- 

ge initial size distribution around 5 μm. Then the suspension was 

ntroduced to clearwater fluid and mixed at G = 50 s −1 and G = 95

 

−1 respectively. The initial particle distribution obeys a Gaussian 

istribution with mean D p and standard deviation D p /3. The max- 

mum floc size was selected as the maximum value between the 

olmogorov scale and the 95th percentile D 95. Besides, the quan- 

ity and sizes of daughter flocs due to breakage of bigger flocs are 

ogically and simply described by binary fragmentation at current 

tage (e.g., Khelifa and Hill, 2006 ; Lee and Molz, 2014 ; Mietta et al.,

011 ; Verney et al., 2011 ). Other aggregation and breakage fitting 

arameters are given in Table. 1 . 
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Table. 1 

The modeling parameters for each experiment, in which λ is the Kolmogorov length scale, D max 

is the maximum floc size, and δ is the coefficient in Eq. 32 . 

Case N D max ( μm) D p ( μm) nf B ( D | η) 

Tran’s experiment, G = 50 s −1 30000 416 5.0 2.2 Binary 

Tran’s experiment, G = 95 s −1 30000 258 5.0 2.2 Binary 

Maggi’s experiment, G = 10 s −1 30000 316 2.0 δ= -0.1 Binary 

Maggi’s experiment, G = 40 s −1 30000 158 2.0 δ= -0.1 Binary 

Maggi’s experiment, G = 5 s −1 30000 447 2.0 δ= -0.1 Binary 

Maggi’s experiment, G = 20 s −1 30000 223 2.0 δ= -0.1 Binary 

Fig. 6. The predicted and experimental characteristic sizes and the predicted FSDs for turbulent shear rate G = 50 s −1 (the first column) and G = 95 s −1 (the second column) 

respectively. 

d

a  

s

h

t

a  

fl

s

m

d

s

s

s  

t

t

t

t

a

p

(

i

s

c  

e

(  

s

m

It can be observed in Fig. 6 (a) and (b) that the aggregation 

ominates in the first 2 ×10 5 MC steps. But the particle size grows 

t a low speed within the first 10 5 MC steps since the floc size

till remains in the small level. The rate of increasing of floc size is 

igher between 1 ×10 5 and 2 ×10 5 MC steps and larger flocs start 

o appear. After 2 ×10 5 MC steps, the fragmentation rate gradu- 

lly rises and the slope of the curve of median floc size is getting

atter. The system approaches an equilibrium state at 3 ×10 5 MC 

teps, around which the aggregation and fragmentation are closely 

atched in rate and the characteristic size keeps fluctuating. In or- 

er to eliminate the error from the fluctuation, the equilibrium re- 

ult is calculated by averaging the results of the last 2 ×10 5 MC 

teps. The fractal dimension ( nf = 2.2) was calibrated under the 

hear condition G = 50 s −1 , and the results for high shear condi-
10 
ion were treated as validation cases. The predicted D 50 when the 

urbulent shear G = 50 s −1 is 90.02 μm, which is highly consis- 

ent with the experiment result 88 μm. When it comes to higher 

urbulent shear condition, the simulated median size is 56.7 μm 

nd appears to be slightly underestimated compared with the ex- 

erimental result of 69 μm. The bias for the low shear condition 

 G = 50 s −1 ) was mainly statistical noise caused by sampling, which 

s inherent to any QMC approach. This error can be reduced with 

ufficient simulation particles ( Hao et al., 2013 ). For the high shear 

ondition ( G = 95 s −1 ) the error of median size was 17.8 %. This

rror seems reasonable as a model system error, as higher values 

up to 27.2%) have been reported by Mietta et al. (2008) . A pos-

ible reason accounted for this underestimation is that the frag- 

entation frequency assumption or/and the aggregation efficiency 
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Fig. 7. Comparison between predicted and experimental FSDs of equilibrium for (a) (c) calibration and (b) (d) validation results for suspended kaolinite with different 

turbulent shear rate. 
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ssumption or/and the fractal dimension are insufficient in a high- 

ntensity turbulent field. It is also critical to note that fixing the 

ractal dimension cannot account for this error. The change of frac- 

al dimension from the constant 2.2 to a variable term (with δ
alibrated using Eq. 6 ) would not help improving the accuracy in 

his case. With the calibrated value δ = -0.046, the error of the me- 

ian size under G = 95 s −1 went up to 21.1%. In addition, one can

irectly obtain the predicted FSD by the MC model at any time 

tep. The predicted FSD at MC Step = 1 ×10 5 , 2 ×10 5 , 3 ×10 5 , and

he equilibrium state are given in Fig. 6 . 

Case V: Maggi’s settling column experiment 

Maggi et al. (20 02 , 20 07 ) carried out a numerical study to ex-

lore the effect of variable fractal dimension on the FSD in a lab- 

ratory settling column with suspended kaolinite. The settling col- 

mn is about 480 cm high with an inside diameter of 30 cm, 

bove which a buffer tank is set to continuously mix and dilute the 

ighly-concentrated suspension to the test concentration. The ho- 

ogeneous turbulence field is produced by an oscillating 3-D grid 

o induce flocculation. Flocs settle through the turbulent field and 

re recorded by the camera system in the measuring section un- 

er the settling column. The experiment is performed with four 

urbulent shear rates G = 5, 10, 20, and 40 s −1 respectively and a

onstant sediment concentration of c = 500 mg/L. The density of 

he selected kaolinite is ρs ≈ 2650 kg/m 

3 and its mineral size is in 

he range 0.1 – 5 μm. The observation window is 6-by-6 mm ² and 

he resolution is 6.42 μm/pixel, which limits the scope of mea- 

urement, and overestimates the number concentration. 

The experimental FSDs for G = 10 and 40 s −1 are used to cal-

brate the fitting parameters such as fractal dimension and frag- 

entation function. The other two shear rates are used to validate 

he model results. The fitting parameters are given in Table. 1 . The 

nitial particle distribution obeys a Gaussian distribution like case 

V except that the D p in this case is 2 μm. The maximum floc

ize is selected as the Kolmogorov scale, and the fractal dimen- 
s

11 
ion is set variable with the coefficient δ = −0.1 recommended in 

aggi et al. (2005 , 2007 , 2008 ). 

The predicted and experimental results of the FSD at equilib- 

ium state are given in Fig. 7 . Note that the size classes under 

.4 μm are shown either in the FSDs in the blue shadow ar- 

as with solid edges to demonstrate the level of detail this study 

an provide. The FSDs given by the other solid lines are calcu- 

ated by normalization of particle arrays excluding the particle 

maller than 6.4 μm, and the size classes are the same as those 

n Maggi et al. (2007) . As can be seen in Fig. 7 , the predicted FSDs

f the four turbulent shear rates match quite well with the exper- 

mental results. 

One can see that for the case of the lower turbulent shear rate 

 = 5 s −1 , the simulated FSD seems to slightly overestimate the 

raction of large particles. It might be a consequence of the under- 

stimation of A max in Eq. 10 for low shear rates. The term of turbu- 

ent shear is smaller when the shear rate is lower, so the differen- 

ial settling term is more dominant in the calculation of aggrega- 

ion kernel and the A max would be underestimated under the sim- 

lification that differential settling is zero. This leads to an overes- 

imation of the aggregation rate of small particles. Another possi- 

le reason is that the assumption of aggregation efficiency or/and 

reakup function or/and binary fragmentation are less appropriate 

or kaolinite flocculation. Further study and improvement will be 

eeded to accord for it. 

The predicted and experimental median size ( D 50 ) is shown in 

ig. 8 . Note that the median size of the experimental result is cal- 

ulated by FSDs using linear interpolation. The predicted and ex- 

erimental results match in good accuracy. The predicted median 

ize is getting smaller as compared to the predicted result with 

ncreasing turbulent shear rate. Several reasons may be accounted 

or this trend. Firstly, particles smaller than 6.4 μm are neglected 

n the experimental results due to the resolution of the camera 

ystem, which would introduce a bias towards larger sizes in mea- 

urement. Secondly, the selection of D max or/and the assumptions 
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Fig. 8. Comparison between predicted and experimental characteristic sizes of equilibrium for suspended kaolinite with different turbulent shear rate. 

Fig. 9. The errors between predicted and experimental results using different QMC sampling schemes for different number of particles. 
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bout aggregation efficiency and fragmentation are insufficient to 

epresent kaolinite flocculation. 

. Discussion 

.1. Monte Carlo and Quasi-Monte Carlo sampling 

In this section, a numerical example, combining aggregation 

nd fragmentation where an exact analytical solution is known 

case Ⅴ in section 3 ), is used to compare the accuracy and effi-

iency of different QMC methods and the LHS scheme described 

bove with the standard MC scheme. MC simulations run in a PC 

quipped with a CPU of Intel(R) Core(TM) i7-9750H CPU @2.60GHz 

nd memory of 16 GB. The error that describes how well the FSD 

pproximates the analytical solution is defined as 

 r = 

N c ∑ 

i =1 

∣∣n i ( D, t ) − n 

A 
i ( D, t ) 

∣∣ (30) 

here N C = 10 is the number of size classes, the superscript A 

ndicates the analytical solution. The simulations were conducted 

ith different numbers of particles N = 15,0 0 0, 30,0 0 0, 75,0 0 0, and

50,0 0 0, and the MC steps were set to 5 ×10 5 , 5 ×10 5 , 7 ×10 5 , and

5 ×10 5 respectively to make sure that equilibrium is reached. 

The FSDs results of all the schemes converge towards the ana- 

ytical solution as N increases ( Fig. 9 ). Note that the errors of all

chemes decrease significantly when N is larger than 30,0 0 0, and 

he benefit (reduction of error) decreases with further increase of 

 . In addition, errors of two QMC methods and the LHS scheme 

re always smaller than standard MC methods using pseudoran- 

om numbers (also see Table 1 ). The result simulated using the 

alton sequence reaches the highest accuracy when N is larger 

han 30,0 0 0. In other words, compared to the other three schemes, 
12 
he QMC scheme using Halton sequence requires the least particle 

umbers in simulated system to reach reasonable accuracy ( E r < 

.055 in this case). 

The computational costs of the four different MC methods 

re also tested ( Fig. 10 ). Since the producing algorithm of quasi- 

umbers induces extra cost or/and the codes might not be opti- 

ized yet, the time consumptions of pre-producing random num- 

er series are not included. In addition, the time consumption of 

imulation with LHS sequence is not tested due to its low effi- 

iency of pre-production. The required CPU time of QMC schemes 

sing Sobol’ and Halton sequences with any number of particles N 

re less than the standard MC method ( Fig. 10 and Table 2 ). The

imulation using Halton sequence saved more CPU time compared 

o that by using other two random number series when N is larger 

han 30,0 0 0. Note that the CPU time reduction of QMC compared 

o standard MC is around 8% with particle numbers N = 1.5 ×10 5 .

t is reasonable to expect that the QMC method would save more 

alculation cost in solving the high dimensional problem (e.g. bio- 

dhesion included PBM). 

.2. Sensitivity tests 

(1) Breakage events 

The fragmentation distribution function plays an important 

ole in predicting the steady-state FSD and characteristic sizes 

 Maggi, 2005 ; Khelifa and Hill, 2006 ; Shin et al., 2015 ). However,

here were only simple theoretical assumptions about the fragmen- 

ation distribution since it is still difficult to carry out laboratory 

xperiment to observe the micro-scale fragmentation processes di- 

ectly ( Maggi, 2005 ; Spicer and Pratsinis, 1996 ). In order to explore 

he influence of different fragmentation distribution functions on 

he modeling results, the three simplest assumptions, including bi- 

ary breakup with mass ratio 1:1 ( Eq. 12 ), ternary breakup with 
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Fig. 10. The time consumptions of simulation using different QMC sampling schemes for different number of particles. (a) Absolute time consumption; (b) time reductions 

compare to pseudorandom sequence (standard MC). 

Table. 2 

The errors and the time consumptions of different RNG functions with N = 150 0 0, 

30 0 0 0, 750 0 0, and 150 0 0 0. 

N = 150 0 0 N = 30 0 0 0 N = 750 0 0 N = 150 0 0 0 

ERROR 

Pseudorandom 0.07341 0.06100 0.05799 0.05525 

Sobol’ 0.05979 0.05735 0.05428 0.05348 

Halton 0.06345 0.05351 0.05162 0.05146 

LHS 0.06525 0.06085 0.05616 0.05544 

TIME CONSUMPTION (s) a 

Pseudorandom 119 149 271 551 

Sobol 118 144 265 530 

Halton 119 145 258 510 

a The time consumption of simulation using LHS sequence is not included due to its 

low efficiency of pretreatments. 
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ass ratio 1:1:2 ( Eq. 31 ), and uniform breakup (Eq. 24 ∼25) (e.g.,

picer and Pratsinis, 1996 ; Shen and Maa, 2015 , 2016 ), are tested in

he model and compared to the experimental data with different 

urbulent shear rates by Maggi et al. (2007) . 

 

N f i ′ = r 4 N f i 

N f i ′′ = N f i ′′′ = ( 1 − r 4 ) N f i / 2 

(31) 

The results given in Fig. 11 show that different fragmentation 

istribution functions will lead to significantly different predic- 

ions. Compared to the binary breakup assumption, the predicted 

SDs from the ternary and the uniform breakup assumptions are 

kewed towards smaller size classes. The predicted median sizes 

imulated by using binary breakup function are higher than those 

y the other two assumptions. The results of the median sizes 

how a tendency that more fragments are produced after each 

ragmentation event, which will result in lower median sizes. This 

s to be expected since the mean size of fragments is smaller than 

hat with assumptions of less fragments. 

It seems that using the binary fragmentation gives a much 

etter match of both FSDs and median sizes. This assumption 

eems reasonable since Kramer and Clark (1999) proposed that the 

robability for a floc breaking into multiple fragments is small, 
13 
nd Tsai and Hwang (1995) found that flocs are prone to binary 

reakup into fragments with similar size. From another perspec- 

ive, breakage into multiple fragments, which occurs infrequently, 

an be seen as several simultaneous binary fragmentation events. 

evertheless, selection of the breakage distribution function still 

equires a better understanding of floc structure (e.g., fractal prop- 

rty, density) and the breakup process under hydrodynamic im- 

act. 

(2) Effects of fractal dimension 

The fractal dimension nf is used to empirically relate the geom- 

try of flocs to their density, strength and settling velocity. Usu- 

lly, nf is estimated from experimental floc size and settling ve- 

ocity data. Note that the fractal dimension of flocs with even the 

ame size may be different since flocs might not be self-similar at 

ll, which is the basic assumption in the definition of fractal di- 

ension. Most studies usually assume a constant nf on empirical 

nderstanding ( Winterwerp, 1998 ), or an exponent form nf based 

n the knowledge that large particles have low nf than smaller 

articles ( Khelifa and Hill, 2006 ; Maggi et al., 2007 ). Son and

su (2008) found that a change of fractal dimension (from a con- 

tant to a power law) does not obviously improve the estimation 

f steady-state median size. Khelifa and Hill (2006) proposed an 
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Fig. 11. Sensitivity tests for different fragmentation distribution functions in simulation for their (a) characteristic sizes and (b) FSDs. 

Fig. 12. Sensitivity tests for different constant and variable fractal dimensions in simulation for their (a) characteristic sizes and (b) FSDs. 
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stimation of the coefficient δ in Eq. 1: 

= 

log ( F c / 3 ) 

log 
(
D f c / D p 

) (32) 

here D fc = 2,0 0 0 μm and F c = 2 are suggested in Khelifa and

ill (2006) . 

As is shown in Fig. 12 , the predicted FSDs at steady state are

uite sensitive to the fractal dimension nf . Using the constant 

f = 2.2, both the modelling FSD skews toward the larger classes 

nd the median size is larger than that by using the constant 

f = 2.0. This is expected since flocs with a higher fractal dimen- 

ion are more solid than those with a low fractal dimension. An- 

ther reason may be that the differential settling term in Eq. 2 be- 

omes more important relative to the turbulent shear term since 

he velocity differences between small flocs and big flocs are sig- 

ificant compared to the case of low nf . Results from using a vari-

ble nf show a higher accuracy with experimental data. The value 

f coefficient δ = −0.1 suggested by Maggi et al. (20 05 , 20 07 , 20 08 )

atched quite well both the FSDs and the median sizes. 

However, it is worth to mention that the predicted median sizes 

sing constant nf and variable nf by Eq. 32 decrease rapidly with 

he turbulent shear increasing. In other words, the relative errors 

f D 50 of those three cases using different nf reduced to nearly 30% 

hen the turbulent shear rate is high. It might indicate that the 

alculation of differential settling ( Eq. 4 ) is overestimated when the 
14 
urbulent shear rate is low. In addition, the maximum aggregation 

ernel A max calculated by Eq. 5 neglects the effect of differential 

ettling, which may cause an error when the turbulent shear rate 

s low to some extent. 

It is widely accepted that the density of the flocs decrease as 

 function of floc size. To better investigate their relationship, the 

ariations of the excess density of the flocs were also simulated. 

ρ f ∝ ( ρs − ρw 

) 

[
D p 

D f 

]3 −n f 

(33) 

here ρw 

= 10 0 0 kg/m 

3 is the density of water. Under the turbu- 

ent shear rate G = 40 s −1 , it can be seen that the floc size increases

hile the floc density deceases with QMC steps, which indicates 

hat the density of the flocs often decrease as a function of floc 

ize ( Fig. 13 ). 

.3. Connections with field-scale sediment models 

With the rapid growth of computational ability, a large quan- 

ity of field-scale numerical models for simulating hydrodynamics 

nd sediment transport have been developed in recent decades. 

ccording to the consideration of computational spatial dimen- 

ion, these numerical models can be classified as one-dimensional 

odels (e.g., MOBED and FLUVIAL 11), 2-dimensional models 



X. Shen, M. Lin, Y. Zhu et al. Water Research 194 (2021) 116953 

Fig. 13. The change of the mean size and the excess density of flocs with QMC 

steps. 
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e.g., SERATRA, Delft 2D and MIKE 21), and 3-dimensional mod- 

ls (e.g., TELEMAC, Delft 3D, and ROMS) ( Krishnappan, 1981 ; 

hang, 1984 ; Onishi and Wise, 1982 ; Walstra et al., 1998 ; 

arren and Bach, 1992 ; Hervouet and Bates, 20 0 0 ; Delft Hy-

raulic, 1999 ; Song and Haidvogel, 1994 ). One of the most im- 

ortant parameters in simulating sediment transport and estuarine 

nd coastal evolution is the settling velocity ( ws ) of cohesive sedi- 

ents, which is controlled by floc size, floc shape, and floc density. 

owever, the settling velocity is often treated as an arbitrary (al- 

hough reasonable) constant or a fitting parameter in most field- 

cale models. However, it usually does not match the measured ws 

 Papanicolaou et al, 2008 ; Toorman, 2012 ; Horemans et al., 2020 ).

he lack of understanding of flocculation mechanisms would cause 

iased estimations in large-scale simulation for sediment transport 

rocesses. 

Numerical models focused on multi-class cohesive sediment 

occulation often give a better estimation of the settling flux but 

onsume more computing resources with an increasing number of 

ize classes ( Lee et al, 2011 ; Toorman, 2012 ; Zhang et al., 2013 ;

hen and Maa, 2017 ). The PBM framework contains external and 

nternal variables: the former describe the physical space of the lo- 

ation of particles, and the latter account for one or several distin- 

uishable properties of particles such as size, volume, and biomass 

raction ( Shen and Maa, 2016 ; Iveson, 2002 ). The computational re- 

ources of PBM increase rapidly with the inclusion of additional 

nternal variables. Thus, the PBM accounting for size in any 3-D 

odel (i.e., with three external variables x, y , and z ) is actually a 4-

 model, which demands expensive computational costs and thus 

as not been widely adopted consequently. Nevertheless, simpli- 

ed PBMs, e.g., the two-class PBM ( Lee et al., 2011 ) and the three-

lass PBM ( Shen et al., 2018a , 2018b ), have already been employed

n cohesive sediment studies. There is still a broad space for mul- 

iple class PBMs to be investigated in cohesive sediment field. 

It is also crucial to note that methods such as the simpli- 

ed Lagrangian model ( Winterwerp, 1998 ) and the PBM solved by 

he discretization method (e.g., Krishnappan and Marsalek, 2002 ; 

iu et al., 2019 ; Verney et al., 2011 ) or the quadrature method of

oments (e.g., Shen and Maa, 2015 , 2016 ; Li et al., 2019 ) have ex-

licit mathematical formulae. They are in favor of being coupled 

nto hydrodynamic models to simulate cohesive sediment trans- 

ort process. For instance, Krishnappan and Marsalek (2002) pro- 

osed a coupled 1-D advection-diffusion and pure-aggregation 

BM to predict the sediment flocs from an on-stream stormwa- 

er management pond, and Liu et al. (2019) implemented the PBM 
15 
n a large eddy simulation of wave-driven Langmuir turbulence. 

n the other hand, the QMC models cannot be directly coupled 

ith field-scale model in estuarine and coastal waters at current 

tage. Regarding the application of stochastic methods in model- 

ng the flocculation process, most of the existing works are based 

n the Winterwerp’s formula. For example, Maggi (2008) proposed 

 stochastic Lagrangian model to explore the temporal variabil- 

ty of the median floc size, similar as shown in Fig. 6 (a)(b), and

hin et al. (2015) adopted a MC method to determine the breakup 

robability and could calculate the FSD in log-normal forms. Nev- 

rtheless, their models seem difficult to extend to account for floc- 

ulation of bio-mineral aggregates with multi-modal FSDs due to 

he uncertainty and complexity of biomass-sediment interaction 

 Shen et al., 2019 ). 

The QMC models produce a new stochastic way to solve PBM 

nd help determining various micro-scale flocculation behaviors, 

hich provides new prospects to improve low cost bio-flocculation 

odels to couple with large-scale model. Possibly coupled with 

omputational fluid dynamics (CFD) in turbulent flow ( Liu and 

han, 2017 ; Xu et al., 2017 ), the QMC based PBMs also have the

otential to simulate the interactions between turbulence and floc- 

ulated particles in the future. 

. Conclusions 

The following conclusions can be drawn for this study: 

1) The quasi-Monte Carlo method is applied to develop a floccula- 

tion model by a size-based population balance model for cohe- 

sive sediments. The maximum relative errors of the mean sizes 

are less than 10%. 

2) The settling column experimental results for suspended kaolin- 

ite with a concentration of 500 mg/L and different shear rates 

carried out by Maggi et al. (2002) are used to validate the simu- 

lated FSD and its median size. The QMC model predicted these 

well by selecting similar coefficients in aggregation and frag- 

mentation processes given by Mietta et al. (2008) . The results of 

simulated median size for a laboratory experiment conducted 

by Tran and Strom (2017) also show a reasonable agreement. 

3) The calculation accuracies and time consumptions of different 

QMC schemes and the LHS scheme were tested. All three con- 

sidered low-discrepancy number schemes show better accuracy 

than the standard MC method, among which the QMC scheme 

using the Halton sequence is the best one in accuracy. On the 

other side, compared to the other schemes, the QMC scheme 

with Halton sequence requires the least particle numbers in 

simulated system to reach a reasonable accuracy. The CPU time 

of schemes using the Halton sequence and the Sobol’ sequence 

are less than that of standard MC. In this case, one can save 

around 8% CPU time with N = 1.5 ×10 5 by replacing the pseudo- 

random number by the Halton sequence. 

4) The model prediction will be significantly influenced by as- 

sumptions on the fractal dimension nf and fragmentation dis- 

tribution functions, which should be checked carefully in every 

model for different applications. 

5) The reasonable performance of the QMC model for cohesive 

sediments shows great prospect in solving multivariate and 

high dimensional problem (e.g. biomass effect on flocculation) 

due to its nature of discretion. 
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