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Simple Summary: Ants, due to their high ecological diversity, are challenging to properly sample.
This issue has been addressed by many authors devising multiple sampling techniques. Depending
on the habitats sampled, the effectiveness and complementarity of the sampling techniques may
vary. Only little work has been done in open temperate habitats. This study aimed to assess the
relative efficiency of two common sampling methods: pitfall and bait trapping. The comparison was
performed using both a taxonomic (species count) and a functional (i.e., acknowledging of ecological
characteristics of species to describe an assemblage of species) approach. Pitfall traps captured more
species and a wider set of functional traits than did bait traps, and all species caught by bait traps
were also caught by pitfall traps. It therefore appears that in the particular context of open temperate
habitats, using bait traps on top of pitfall traps will cost time without information gained and that
pitfalls should thus be favored in this context.

Abstract: Whereas bait and pitfall trappings are two of the most commonly used techniques for
sampling ant assemblages, they have not been properly compared in temperate open habitats. In
this study, taking advantage of a large-scale project of heathland restoration (three sites along the
French Atlantic Coast forming a north-south gradient), we evaluated the relative efficiency of these
two methods for assessing both taxonomic and functional diversities of ants. Ants were collected
and identified to species level, and six traits related to morphology, behavior (diet, dispersal and
maximum foraging distance), and social life (colony size and dominance type) were attributed to
all 23 species. Both observed and estimated species richness were significantly higher in pitfalls
compared to spatially pair-matched bait traps. Functional richness followed the same pattern,
with consistent results for both community weighted mean (CWM) and Rao’s quadratic entropy.
Taxonomic and functional diversities from pitfall assemblages increased from north to south locations,
following a pattern frequently reported at larger spatial scales. Bait trapping can hardly be considered
a complementary method to pitfall trapping for sampling ants in open temperate habitats, as it
appears basically redundant with the latter sampling method, at least in coastal heathlands of the
East-Atlantic coast.

Keywords: sampling method; estimated richness; functional diversity; maritime cliffs; Western
France; Formicidae
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1. Introduction

Because of their high abundance and diversity except in polar regions, ants play
a key role in ecosystem functioning in many terrestrial habitats, from open ecosystems
like deserts to forests, and from the floor to the canopy [1]. Ants are known to be good
bioindicators [2–5], with high ecological importance [1]. As many other groups, ants
are globally more diverse in the tropics than in temperate areas [6], and the amount of
publications regarding sampling methods is also greater for tropical regions [7,8]. Temper-
ate open habitats on the other hand have not been reviewed as much and are linked to
methodological limitations regarding what kind of traps can be set in them.

Two common sampling methods for ant assemblages are pitfall and bait traps. They
were selected in this study because they do not need arboreal stratum nor extensive litter
depth to be used [9]. Pitfall traps are pits set in the ground that sample epigeic fauna that
randomly falls inside it. This sampling method provides good sampling effort for epigaeic
fauna, yet it is sensitive to species size and level of activity [10–12]. On the other hand,
baiting traps use foods to attract ants, which can later be actively sampled. This sampling
method may attract species from different strata and can assess competition relationships
between ants while being sensitive to exclusion, missed diet, and time of sampling [13].

Pitfall trapping is expansively used and recognized as a good method to sample
epigeic arthropods [14], including ants [15]. However, it is also criticized for not being an
exhaustive technique [10], suffering from several biases related to microhabitat complexity
and trap diameter, reported for decades now, e.g., [16,17]. The limits of pitfall trapping are
particularly obvious for ants due to their heterogeneous use of space [8] and pheromone
distress signals that can induce artificially high abundance in single traps [18].

On the other hand, bait trapping is recognized as the most common method for
sampling ants [13] and is sometimes used simultaneously with pitfall trapping, but mostly
in tropical habitats [19]. A few examples can be found for temperate areas, but they are
restricted to closed habitats like forests [20–23].

In this study, we compared the efficiency of pitfall vs. bait trapping for assessing
the taxonomic and functional diversities of ant assemblages in temperate open habitats
(coastal heathlands). We used the sampling design provided by a large-scale project where
heathland restoration is evaluated. Arthropods were sampled in three heathlands along
the French Atlantic Coast covering a gradient of restoration time that we did not test
here because of its small spatial scale. We especially tested the hypothesis that in an open
habitat, pitfall trapping performs well see, e.g., [24] and is consequently expected to capture
ant diversities in greater proportions than bait trapping does in closed habitats [21,22].
Conversely, we expected functional diversity to be inferior with bait trapping, as only
some species are targeted by baits [4]. Lastly, we expected taxonomic, but not functional,
diversities to differ between sites, with species richness increasing from north to south [25]
because even if the gradient is geographically short, our southern location is known to
have a warmer microclimate [26].

2. Material and Methods
2.1. Study Sites

Fieldwork was done at three coastal sites in Brittany, Western France. Sites were coded
according to the north-south gradient they follow. La Pointe de Pen-Hir (S1), located on the
mainland (48◦15′03′′ N, 4◦37′25′′ W), La Pointe de l’Enfer (S2) (47◦37′18.3′′ N 3◦27′46.9′′ W),
and L’Apothicairerie (S3) (47◦21′44.0” N, 3◦15′34.9′′ W) (see [27], 2020 for a full description
and pictures of the sampling sites). Mean annual temperatures are 10.6 ◦C, 12.6 ◦C, and
12.6 ◦C, mean maximal temperatures are 13.13 ◦C, 15.08 ◦C, and 14.86 ◦C, and mean annual
precipitations 537.8 mm, 717.0 mm, and 675.6 mm, for S1, S2, and S3 respectively [28]:data
from association infoclimat.fr.
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2.2. Sampling Design

Two 400 m2 plots of homogeneous vegetation were designed for each of the three
degradation states at each of the three sites, resulting in six plots per site. Four pitfall traps
(80 mm in diameters and 100 mm deep) were set at each plot. Traps were half-filled of
salted solution (250 g/L) with a drop of odorless soap, and settled 10 m apart in order
to avoid interference and local pseudoreplication [29]. This resulted in a total of 71 traps
(Figure 1) (in one station, the sampling area was too restricted to set four traps spaced 10 m
apart, so one was removed) active between mid-March and mid-June 2017, and emptied
every 2 weeks. One bait trap was spatially pair-matched with each pitfall trap, resulting in
71 bait traps. The baiting device consisted of a cardboard square (4 cm × 4 cm) on which
approximately 1 cm3 of tuna rillettes and a few drops of honey were deposited (Figure 2).
A wooden stick was driven through the cardboard, which anchored it to the ground to
ease both sampling and detection on the field. Bait traps were set five times for 2 h in the
middle of the day and by sunny weather only, 2 weeks apart between March and June.
All the ants present on the trap after the 2 h span were captured for identification. The
pitfall traps remained active for 12 weeks from mid-March to mid-June. For each trap, data
from the whole season were pooled. This pooling was performed in order to assess local
assemblages regardless of potential phenological variations.

Figure 1. Pitfall traps arrangement in La Pointe de Pen-Hir (S1) as an example.

Samples of pitfall and bait traps were sorted, transferred to ethanol 70◦, and stored at
the University of Rennes 1. Ants were identified to species level using keys of Blatrix [30]
and of Seifer [31–33]. For further sites description see [27].
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Figure 2. Example of (a) bait trap and (b) pitfall traps.

2.3. Functional Traits

Six traits related to morphology, behavior (diet and dispersal), and social life (colony
size and dominance type) were attributed to all the 23 species (Appendix A), using different
bibliographic sources (Appendix B).

2.4. Statistical Analysis

Presence/absence data were used to avoid abundance bias from difference in species
activity rate and/or in sensitivity to habitat structure [34]. Species richness was calculated
with the vegan package [35], while functional richness as well as Rao’s quadratic entropy
and the CWM (community-level weighted means) were calculated with the FD package [36].
Species richness was also compared between methods using estimated richness based on
methods developed by Chao [37,38] using the “iNEXT” function in the iNEXT package [39].
This method was selected to account for the possible influence of sampling coverage.
The test was ran with 40 knots and 200 bootstrap replications. Significant differences
were further assessed using the absence of overlapping confidence intervals on iNEXT
curves [39,40].

The influence of sampling methods on species richness was tested using a Poisson
GLMM (generalized linear mixed model), while functional richness and Rao’s quadratic
entropy used a Gaussian GLMM; all three used site as a fixed factor, as ants diversity is
known to increase in warmer climates [41]. The GLMM type of error (Poisson vs. quasi-
Poisson) was assessed following O’Hara & Kotze [42] for the Poisson model. If detected,
overdispersion was handled by using a quasi-Poisson distribution. Full models were tested
and underwent decremental fitting. Functional patterns were compared between sampling
methods with CWM and Rao’s quadratic entropy to assess shifts in main trait values and
trait divergences, respectively [43]. The CWM based on numerical attributes (colony size
and foraging distance) was tested using a Wilcoxon test.

All analyses were carried out using R software (version 3.6.1 2019-07-05).

3. Results

Pitfall and bait trapping resulted in the collection of 4976 and 4419 individuals, re-
spectively (Appendix A), altogether representing 23 species. All species were collected
by pitfall traps, and 10 by bait traps (Table 1), resulting in 13 species caught in pitfall
but missed by bait. Formica pratensis was sampled by bait traps only in S1 and S2, and it
was sampled with both methods in S3. Sampling coverage reached asymptotes (Figure 3)
for both sampling methods and was above 90%, indicating a sufficient sampling inten-
sity. The observed species richness was significantly higher in pitfalls than in bait traps
(χ2

1,130 = 0.74; p < 0.001) (Figure 4a).
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Table 1. Occurrence of ant species in the three sites (S1; S2; S3) for both bait and pitfall traps.

Species S1 S2 S3 All Sites

Bait Pitfall Bait Pitfall Bait Pitfall Bait Pitfall

Aphaenogaster gibbosa (Latreille, 1798) 0 0 0 1 0 0 0 1
Aphaenogaster subterranea (Latreille, 1798) 0 0 0 0 0 1 0 1
Formica cunicularia Latreille, 1798 1 1 1 1 1 1 1 1
Formica pratensis Retzius, 1783 1 0 1 0 1 1 1 1
Hypoponera eduardi (Forel, 1894) 0 0 0 1 0 1 0 1
Lasius alienus (Foerster, 1850) 1 1 0 1 0 1 1 1
Lasius emarginatus (Olivier, 1792) 0 0 0 1 0 0 0 1
Lasius flavus (Fabricius, 1782) 0 0 0 0 0 1 0 1
Lasius niger (Linnaeus, 1758) 1 1 0 0 1 1 1 1
Lasius platythorax Seifert, 1991 0 0 1 1 0 0 1 1
Lasius psammophilus Seifert, 1992 1 1 0 0 0 0 1 1
Messor capitatus (Latreille, 1798) 0 0 0 1 0 0 0 1
Myrmecina graminicola (Latreille, 1802) 0 1 0 1 0 1 0 1
Myrmica ruginodis Nylander, 1846 0 0 0 0 0 1 0 1
Myrmica sabuleti Meinert, 1860 0 1 1 1 1 1 1 1
Myrmica scabrinodis Nylander, 1846 0 0 0 1 1 1 1 1
Plagiolepis pallescens Forel, 1894 0 1 0 0 0 0 0 1
Ponera coarctata (Latreille, 1802) 0 1 0 0 0 0 0 1
Solenopsis fugax (Latreille, 1798) 0 1 0 1 0 1 0 1
Tapinoma erraticum (Latreille, 1798) 1 1 1 1 1 1 1 1
Temnothorax unifasciatus (Latreille, 1798) 0 0 0 0 0 1 0 1
Tetramorium atratulum (Schenck, 1852) 0 0 0 0 0 1 0 1
Tetramorium gr. caespitum-impurum 1 1 1 1 1 1 1 1

Only bait/shared/only pitfall

The estimated species richness was significantly higher in pitfall than in bait traps when
plotted against the number of samples or vs. the sampling coverage (Figure 3b,c, respectively).

The same pattern was observed for functional richness, with higher functional richness
in pitfall compared to bait traps (χ2

1,130 = 0.71; p < 0.001) (Figure 3b). The CWM displayed
the same main trait value with the same categorical variable (e.g., large dominant omniv-
orous epigeic ants with independent colony formation), while no significant differences
were observed in the colony size score (W = 207; df = 2; p = 0.546). The foraging distance
and Rao’s quadratic entropy were both significantly higher in pitfall than in bait traps
(W = 2880.5; df = 2; p = 0.002 and (χ2

1,130 = 0.17; p < 0.001, respectively; see Figure 4c).
For both methods combined, significant differences were observed along the north-

south gradient in both taxonomic and functional diversity metrics (Figure 5), with higher
species richness in the south (χ2 = 6.20; df = 2; p = 0.045), lower functional richness in
the north (χ2 = 8.21; df = 2; p = 0.01), and higher Rao’s quadratic entropy in the south
(χ2 = 11.12; df = 2; p = 0.004).
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Figure 3. Estimated richness of ant assemblages from bait (red) and pitfall traps (blue) from the
pooled data of the three sites. (a) Coverage vs. number of sampling units; (b) Species diversity vs.
sampling coverage; (c) species diversity vs. number of sampling units. Plain line corresponds to
observed data, while dashed line stands for extrapolated estimation. The colored area around the
line is the standard deviation resulting from bootstrapping.
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Figure 4. Comparison between bait and pitfall traps of (a) species richness; (b) functional diversity; and (c) Rao’s quadratic
entropy. Significant differences are represented using different successive letters (e.g., A & B) for p-value < 0.001.

Figure 5. Boxplot of diversity metrics (species richness, functional richness (FD), and Rao’s quadratic entropy) compared
between the three sites along a north-south gradient (S1 being in the south and S3 in the north). Significant differences
(p < 0.05) are represented using different successive letters (e.g., A & B).
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4. Discussion

Following our first assumption, both observed and estimated species richness were
higher in pitfall compared to bait traps, with bait traps capturing only a subset of what
the pitfall traps did. This results concur with the literature concerning closed habitat ant
assemblages [21,22], with bait traps used with other sampling methods being outperformed.
Several hypotheses can be formulated to explain this result. One could argue that the
sampling effort greatly differed between the two methods, with pitfall traps being active for
2 months in a row and bait traps for a total of 10 h covering five events of sampling with a
2 h span each. Although the sampling time (2 h) of bait traps could be a reason for its lower
effectiveness, the sampling coverage was very high for both methods, and their capture
ability was thus comparable regardless of the sampling effort. Previous studies with higher
sampling effort with baiting also showed similar trends [23]. The sampling time might still
have an effect, since circadian activity is known to vary greatly between ant species [44,45].
Species being active at night, early day, or late afternoon could therefore have been missed
by bait trapping with the protocol used here. Another known bias known of bait traps is
exclusive competition [46]. Some competitive ants could have monopolized the baits and
limited the access to other less competitive ants. Such competition could explain both a
high coverage and the species missed from the local pool.

The functional analysis showed that the two methods caught mainly dominant ants,
and that ant assemblages caught by bait traps did not differ significantly from the mean
trait. This problem could have been avoided by a higher bait trap duration since less
competitive species tend to be active during cooler times of the day to avoid interspecific
competition [13]. Multiplying the number of observations during the 2 h span bait traps
were active could have lessen the potential impact of exclusive competition [13].

Another fact can also help explaining the redundancy of the two sampling methods:
species captured by bait traps are considered particularly populous and active [4]. This is
known to increase the probability of capturing ants in pitfall traps [13], which together with
the CWM results might explain the high similarity between the two sampling methods.

On the other hand, several species missed by bait traps have traits that can explain their
absence. Slow-moving species (i.e., Aphaenogaster subterranea, Myrmecina graminicola, Solenop-
sis fugax) have a lower probability to contact the baits, as suggested by the shorter foraging
distance observed in ant species sampled in bait traps. Some species can also be absent
because of their specialized diet, such as aphids’ honeydew (Lasius flavus, Lasius emarginatus)
or seeds (Messor capitatus) [4,13]. These species with traits differing from the CWM are likely
responsible for the higher Rao’s quadratic entropy and functional richness in pitfall traps.
Lastly, some species exclusive of pitfall traps (e.g., Aphaenogaster gibbosa, Hypoponera eduardi,
Plagiolepis pallescens, Ponera coarctata, or Tetramorium atratulum) are considered uncommon
or rare [30], which might lower the probability to contact them using baits traps, eventually
contributing to the observed pattern. Another final explanation comes from the fact that
the important degradation of our study sites may have increased the relative abundance of
common and numerous species that might have monopolized baits [13].

Our last assumption for the north-south gradient was validated, with species richness
higher in the southern location. This result is consistent with patterns of ant diversity often
reported at larger spatial scales, e.g., [41]. More surprisingly, even at relatively small spatial
scales, this N-to-S difference also applied to functional metrics, as it was found a few times
at larger spatial scales, e.g., in Europe: [47]. This phenomenon could be explained by the
zoogeographical area that drives diversity on the French territory, as our southern sites are
located in the northern limits of a richer Mediterranean zoogeographic zonation [48].

Our conclusion, applicable in open temperate habitats such as coastal heathlands, is
to avoid bait trapping for ant surveying, as it is redundant with pitfall trapping. This claim
is further stressed because the results were stable for all metrics of diversity considered.
Furthermore, multiplying sampling methods is costly both in terms of resources and time
and should therefore be considered only when data are obviously improved. Similar
conclusions were drawn by Mahon et al. [49], who stated that using several sampling
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methods at once was not always necessary in temperate environments, especially in studies
not aiming at full inventory of ant diversity. While bait trap does not complement pitfall
traps, active collection is reported to be an interesting option to complete the species
inventory by pitfalls traps [13]; however, this has to be performed by individuals with
highly specialized skills in order to be effective [8].
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Appendix A

Table A1. Headcount by method and traits of all encountered species. Sizes: L = large; M = medium; S = small. Trophic guild: Om = omnivore; Pr = predator; Ne = nectarivorous;
SF = seed feeder; Pa = parasitic. Dispersal: I = independent; D = dependent; M = mixed. Pa = parasitic. Stratum: E = epigeic; H = hypogeic.

Species Headcount
Size Dominance Trophic Guild Dispersal Colony Size Score Foraging Distance

(in Meter) StratumPitfall Bait

Aphaenogaster gibbosa (Latreille, 1798) 21 0 L 0 Om I 6.48 2 E
Aphaenogaster subterranea (Latreille, 1798) 4 0 M 0 Om I 7.6 2 E

Formica cunicularia Latreille, 1798 93 42 L 0 Om I 7.24 20 E
Formica pratensis Retzius, 1783 1960 75 L 1 Om I 11 100 E

Hypoponera eduardi (Forel, 1894) 6 0 S 0 Pr M 7.31 2 H
Lasius alienus (Foerster, 1850) 110 778 M 1 Om I 9.47 10 E

Lasius emarginatus (Olivier, 1792) 1 0 M 1 Om I 9.21 10 E
Lasius flavus (Fabricius, 1782) 8 0 M 0 Ne I 9.21 2 H
Lasius niger (Linnaeus, 1758) 962 498 M 1 Ne I 9.21 10 E

Lasius platythorax (Seifert, 1991) 30 17 M 1 Ne I 9.21 5 E
Lasius psammophilus (Seifert, 1992) 66 36 M 0 Ne I 10.43 5 E

Messor capitatus (Latreille, 1798) 7 0 L 1 SF I 8.29 20 E
Myrmecina graminicola (Latreille, 1802) 5 0 M 0 Pr I 4.61 2 H

Myrmica ruginodis Nylander, 1846 29 0 L 0 Om M 7.6 2 E
Myrmica sabuleti Meinert, 1860 45 44 L 0 Om M 8.01 2 E

Myrmica scabrinodis Nylander, 1846 530 50 L 0 Om M 7.31 2 E
Plagiolepis pallescens Forel, 1889 8 0 S 0 Om M 6.68 5 E
Ponera coarctata (Latreille, 1802) 1 0 M 0 Pr D 4.61 2 H
Solenopsis fugax (Latreille, 1798) 2 0 S NA Om M NA 2 H

Tapinoma erraticum (Latreille, 1798) 176 88 S 1 Om M 8.16 10 E
Temnothorax unifasciatus (Latreille, 1798) 1 0 S 0 Pr I 5.78 2 E

Tetramorium atratulum (Schenk, 1852) 1 0 S 0 Pa P 0 NA NA
Tetramorium gr. caespitum-impurum 910 2791 S 1 Om I 9.21 10 E
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Appendix B

Table A2. Functional traits used and their attributes.

Trait Data Type States References

Size Categorical

Worker body size from the tip
of mandibles to tip of the

gaster (mm):
Small: <3 mm

Medium: 3–4 mm
Large: >4 mm

[13]
[30]

Dominance Binary 0: Subordinate [50]
1: Dominant

Trophic guild Categorical Omnivore [50]

Predator [30]
[51]

Seed feeder
Nectarivorous

Parasitic
Dispersal Categorical Independent [50]

Dependent [30]
Mixed [51]

Parasitic

Colony size Numerical Logarithm of mean of number
of workers per colony [50]

Foraging distance Numerical Distance in meters from the
nest while foraging

[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]

Stratum Categorical Epigaeic
Hypogaeic

[55]
[59]
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