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Entheseal changes and estimation of adult age-at-death

In identified skeletal collections, age-at-death is the main variable

explaining the distribution of entheseal changes (ECs) in adults: older

individuals tend to display more ECs and more exuberant changes

than younger ones (e.g., Mariotti et al., 2004; Milella et al., 2012;

Shaibani et al., 1993; Villotte, 2009). This has led to an attempt, publi-

shed recently in AJPA (now AJBA), to estimate adult age-at-death

from EC stages (Milella et al., 2020). In their article, Milella and col-

leagues used scores of “robusticity” (one type of EC) as predictors in

multiple regression analyses with age as the dependent variable. The

results are relatively disappointing: even with an age prediction inter-

val of ±20 years, the percentage of correctly classified individuals

barely reaches 80% in their study. This poor performance is likely

related to the expectation of an implicit linear relation between ECs

and chronological age, whereas too many factors (e.g., genetic back-

ground, hormonal levels, physical activity levels) interact in EC devel-

opment. As a result, the correlation between chronological age and

ECs, although statistically significant, remains too low in our opin-

ion to reliably and accurately estimate age-at-death using statistical

approaches such as the one developed by Milella and collaborators.

As we highly esteem the numerous and excellent studies carried on

by our colleagues on various aspects of ECs (e.g., Bertsatos

et al., 2021; Mariotti et al., 2004; Milella et al., 2012), and as their

recent article in your journal motivated us to think about this issue,

we would like to submit to them, and more broadly to the readers

of the AJBA, a very simple idea that may create new avenues in the

estimation of adult age-at-death using ECs.

If this correlation between age and ECs is well known, the underly-

ing physio(patho)logical processes involved are not (Villotte & Knüsel,

2013). However, we do know that these processes likely differ, at least

in part, for fibrocartilaginous and fibrous entheses (for this specific point,

and for a presentation these two types of entheses in biological anthro-

pology, see Villotte & Knüsel, 2013). Milella et al. (2020) noted that

“When fibrous and fibrocartilaginous entheses are treated separately,

the former outperforms the latter (in age-at-death estimation)”. This is in
agreement with a previous work that has shown a stronger correlation

between chronological age-at-death and ECs at fibrous sites, compared

to fibrocartilaginous ones (Villotte, 2009). However, careful data analyses

indicate that (a) for both types of entheses this correlation remains too

low for reliable age-at-death estimation (Henderson et al., 2017;

Villotte, 2009) and (b) for some fibrocartilaginous entheses, major ECs

appear almost exclusively after the fourth decade of life and are usually

seen in 50+ year-old individuals (Villotte, 2009). By “Major ECs” we

mean exuberant changes (usually mineralized tissue formation associated

with surface discontinuity) that affect the entire attachment site.

Thus, even if the correlation of EC stages and chronological age-at-death

is weaker for fibrocartilaginous entheses, major ECs for these attachment

sites seem potentially good indicators of older individuals (a similar

idea has been recently formulated [though not tested] by Bertsatos

et al., (2021)).

Major ECs could thus be relevant in the age-at-death estimation

of adults, as they are likely “specific” to an age group. However, the

contrary may be not true: healthy entheses and minor ECs can be seen

in individuals of all ages (including older individuals), and we thus con-

sider them as likely irrelevant for age estimation (Figure 1). This type of

reasoning may look surprising, but it is actually applied quasi systemati-

cally in bioarcheology and forensic anthropology for another indicator

of age-at-death for adult skeletons, namely the fusion stage of the

F IGURE 1 Schematic representations of approach of estimation
of adult age-at-death using fusion stage of the sternal extremity of
the clavicle (a), and major EC (b). Black dots: Theoretical adult
individuals. Dashed lines: Maximum (a) or minimum (b) ages
determined using these approaches. The rectangles indicate the
individuals actually assessed for age using these approaches
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sternal extremity of the clavicle (Figure 1). An unfused or partly fused

epiphysis is extremely valuable to identify young adults. Conversely, a

fused sternal extremity is near totally irrelevant for adult skeletons, as

it indicates an individual older than 20 years (Schaefer et al., 2009).

In order to test this hypothesis, we used five identified skeletal

collections (Table 1) for which ECs were recorded for 18 appendicular

entheses (group 1 in Villotte, 2006). The method identifies three

stages for each enthesis (Villotte, 2006): A (no change), B (minor EC),

and C (major EC). All individuals with at least one stage recorded were

included. Individuals with systemic diseases, such as diffuse idiopathic

skeletal hyperostosis or spondyloarthropathies were excluded. Stages

for bones displaying macrotrauma were not taken into account. Three

of the collections (Bologna, Coimbra, and Spitalfields) were used as a

learning metapopulation sample and the last two collections were

used as target samples. These later collections (Schoten and Sassari)

were chosen as they differ dramatically from each other in terms of

age-at-death distribution as well as in extent of preservation: older

individuals and missing data are much more frequent in the Schoten

collection than in the Sassari one (Table 1).

All the analytical process was carried out using R 4.0.5 (R Core

Team, 2021); the whole R script along with complementary results

being provided as Supporting Information S1. The first step was to

provide some kind of reliable and generalizable estimate for the

minimum age of individuals exhibiting stage(s) C, which allows us to

distinguish between younger and older individuals (see Figure 1). In

order to do so, we represented the age distribution of the individuals

from the learning metapopulation sample exhibiting at least one, two,

and three stage(s) C, and computed in each case the associated 5%

empirical quantiles (Figure 2), that is, the age threshold t such that 95%

of individuals are older than t year-old. These quantiles were approxi-

mately equal to 41, 47, and 50 years old respectively. In a second step,

we tested on the individuals of the Sassari and Schoten collections the

decision rules empirically defined on the learning sample; that is, that

any individual with at least one stage C should be at least 41 year-old,

and similarly for two stages C (47-year-old) and three stages C

(50-year-old). Confusion matrices were computed to evaluate the

accuracy of these decision rules (Table 2). In a final step, we computed

the percentage of misclassified observations: the number of individuals

exhibiting stage(s) C with an age-at-death below the defined minimum

age divided by the number of all individuals exhibiting stage(s) C.

TABLE 1 Summary statistics for the samples

Sex Age Number of missing EC data per individual

Collections N males N females Mean SD Min-max Median Min-max

Bologna 84 0 45.1 17.1 20–91 3 0–15

Coimbra 173 153 42.2 15.7 20–89 1 0–17

Spitalfields 83 95 53.4 15.7 21–87 5 0–17

Sassari 133 0 40.2 15.7 20–84 1 0–11

Schoten 25 20 61.2 21.7 19–94 7 1–15

Note: For a presentation of the individual collections, see Milella et al., 2020; Orban et al., 2011; Villotte, 2009. Ages are in years.

F IGURE 2 Age distributions of individuals from the learning
metapopulation sample. (a) Individuals with no stage C, and
individuals with at least 1 stage C. (b) Individuals with 0 or 1 stage C,
and individuals with at least 2 stages C. (c) Individuals with 0, 1, or
2 stage(s) C, and individuals with at least 3 stages C. The blue squares
indicate the empirical quantiles of order 5% (i.e., 95% of individuals
are older than this threshold)
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Our approach seems promising, as it reliably identifies individuals

over 40+ and/or 50+ year-old in the target skeletal samples with very

few misclassified individuals (≤5.0% [Table 3], which was the expected

error rate for these decision rules). This approach may thus be useful in

forensic context, as reliable age-at-death estimation is crucial for identi-

fication. These broad, not clearly defined, age “categories”may not look

particularly useful, but one has to remember that the age-at-death of

individuals from this age “group” is systematically underestimated by

almost all methods (see for instance references in Milella et al., 2020).

Another important point that needs to be stressed is that this approach

deals very easily with missing data. For instance, age-at-death can be

estimated for an individual with only three entheses scored (out of 18)

but who displays a stage C. This approach may thus have bio-

archeological and forensic applications, as it may be used on poorly pre-

served skeletons or on isolated bones. One of the limitations, though, is

that this approach relies on one or very few major ECs that can also be

produced by a traumatic event or a systemic condition. Such cases

need to be carefully excluded as a consequence.

In our opinion, this approach is promising because there is great

scope for improvement. For instance, one way to increase the mini-

mum ages would be to compute them from a lower percentage of

individuals with stage(s) C from the learning metapopulation sample.

Reducing this threshold to 90% of individuals with at least one stage

C leads to a minimum age of 48 years (but significantly increases the

percentage of misclassified individuals, see S1). It seems also possible

to exclude some entheses in the analyses in order to reduce the per-

centage of misclassified individuals and/or to increase the minimum

age. Other ways to improve this approach may be to focus on one

specific feature (such as major enthesophytes), or to use the extremes

of a multi-stage method that distinguish a greater number of grada-

tions than the one used here (e.g., five stages instead of three). In any

case, this approach seems promising, and we hope to see more arti-

cles, from Milella and colleagues and from other scholars, challenging

and possibly improving it.
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TABLE 2 Confusion matrices for age classes

Sassari Schoten Both collections

(20,41) (41,99) (19,41) (41,99) (19,41) (41,99)

<1 69 44 9 7 78 51

≥1 1 19 1 28 2 47

(20,47) (47,99) (19,47) (47,99) (19,47) (47,99)

<2 90 33 14 5 104 38

≥2 0 10 1 25 1 35

(20,50) (50,99) (19,50) (50,99) (19,50) (50,99)

<3 95 32 17 8 112 40

≥3 0 6 1 19 1 25

Note: Defined from Figure 2, and number of entheses having reached

stage “C” in target samples. “<1”, “<2”, “<3”: Individuals with less than,

respectively, 1, 2, or 3 stage(s) C. “≥1”, “≥2”, “≥3”: Individuals with,

respectively, at least 1, 2, or 3 stage(s) C.

TABLE 3 Percentage of misclassified individuals for each
collection

Sassari Schoten Both collections

≥1 stage C 5.0% 3.6% 4.1%

≥2 stages C 0.0% 3.8% 2.8%

≥3 stages C 0.0% 5.0% 3.8%
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1. R configuration

We provide here some details about our configuration and the R packages used:

### Use groundhog to control package versions:
library(groundhog)
today <- "2021-04-20"
### Load the following R packages:
groundhog.library(beeswarm, date = today)
groundhog.library(dplyr, date = today)
groundhog.library(RcmdrMisc, date = today)

### More information about our R session:
print(sessionInfo(), locale = FALSE)

R version 4.0.5 (2021-03-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Manjaro Linux

Matrix products: default
BLAS: /usr/lib/libopenblasp-r0.3.13.so
LAPACK: /usr/lib/liblapack.so.3.9.1

attached base packages:
[1] stats graphics grDevices utils datasets
[6] methods base

other attached packages:
[1] RcmdrMisc_2.7-1 car_3.0-10 ggplot2_3.3.3
[4] lme4_1.1-26 survival_3.2-10 sandwich_3.0-0
[7] sp_1.4-5 Matrix_1.3-2 nlme_3.1-152

[10] SparseM_1.81 viridisLite_0.4.0 carData_3.0-4
[13] Formula_1.2-4 lattice_0.20-41 dplyr_1.0.5
[16] beeswarm_0.3.1 groundhog_1.3.2

Those versions correspond to the 2021-04-20 snapshot from the MRAN repository (https://
cran.microsoft.com/snapshot/2021-04-20/).
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2. Load data into R

The original CSV file is not made publicly available, but is available upon reasonable request
to Sébastien Villotte.

#####################
### Load CSV file ###
#####################
dat <- read.csv("./data/data_ajpa.csv",

header = TRUE, row.names = 1,
sep = ";", dec = ",",
stringsAsFactors = TRUE,
na.strings = "", fileEncoding = "utf-8")

Here is an overview of the first 6 rows and 8 columns of the data:

## Overview of the dataframe:
dat[1:6, 1:8]

Population Sex Age HSC_D HSI_D HEL_D HEM_D RBB_D
COIMM097 Coimbra M 20 A B A A A
SARDM199 Sardaigne M 20 A A A A A
BOLOM070 Bologne M 20 A A A A A
SARDM136 Sardaigne M 20 A A A nil B
COIMF189 Coimbra F 20 A A A A A
COIMM422 Coimbra M 20 nil nil nil nil B

Table 1: Overview of the original data.

The dataframe thus consists in individual metadata (Population, Age, Sex) and entheseal
stages (either “A”, “B” or “C”) for all entheses under study, and for both right and left side.

The original data includes more than the 9 entheses studied here, so that we select only
those columns in the dataframe for the subsequent analyses, correspond to the entheses from
“System 1” in Villotte (2008):

## Select only some of the entheses:
entheses_sys1 <- c("HSC", "HSI", "HEL", "HEM", "RBB",

"CSB", "FPF", "FMF", "FIP")
sys1 <- select(dat, contains(c("Population", "Age", entheses_sys1)))
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3. Define various R helpers

For the subsequent analyses, we will use some custom R functions.
The first function, plot_nc(), will help to display beeswarm plots comparing the age

distribution of several groups of individuals, depending on their number of entheses having
reached the stage C (argument nmin in the code below). Furthermore, an age threshold
(argument q) will be added on the plot. With the default value q = 0.9, one can see the age
reached by at least 90% of individuals in each group.

plot_nc <- function(data, nmin, q = 0.9, ...) {
### data: dataframe; must contain Pop, Age, *and* entheses values.
### nmin: minimal number of values "C" required
### q: required quantile value to add on the plot
### ...: further arguments passed to beeswarm()

## 0. First exclude those individual that are not well-preserved:
nobs <- apply(data[, -c(1, 2)], MARGIN = 1,

FUN = function(x) sum(!is.na(x)))
data <- data[nobs >= nmin, ]

## 1. Count number of entheses reaching a value of "C" for each individual:
data$nsc <- apply(data[, -c(1, 2)], MARGIN = 1,

FUN = function(x) sum(x=="C", na.rm = TRUE))

## 2. Add "classes" of individuals depending on their number of C's:
data$cl_nc <- cut(data$nsc, right = FALSE,

breaks = c(0, nmin, ncol(data) - 3))
levels(data$cl_nc) <- gsub(x = levels(data$cl_nc), pattern = "\\)",

replacement = "\\[")

## 3. Plot age against those classes:
par(cex = 1.1)
beeswarm(Age ~ cl_nc, data = data, pch = 16,

spacing = 0.69, xlab = "Number of entheses at stage C", ...)
grid(lwd = 2)

## 4. Add quantile value:
moy <- quantile(data[as.numeric(data$cl_nc) > 1, "Age"],

probs = 1-q)
points(x = 2, y = moy, pch = 15, cex = 2, col = "blue")
text(x = 2, y = moy, offset = 1.5, pos = 4, col = "blue",

labels = paste(round(moy, 1), "years"))
}
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The second R function is used to test on new population samples the decision rules em-
pirically determined using the learning metapopulation sample. It returns the confusion
matrix between age classes (dichotomously defined thanks to an age threshold), and en-
theseal classes (dichotomously thanks to a threshold in the number of observed entheses in
stage 2, n2).

test_rule <- function(data, nc, threshold) {
### data: dataframe with Population, Age, and entheses values
### nc: required number of entheses at stage "C"
### threshold: age threshold

data$nsc <- apply(data[, -c(1:2)], MARGIN = 1,
FUN = function(x) sum(x == "C", na.rm = TRUE))

data$ClEnt <- factor(ifelse(data$nsc >= nc,
yes = paste(">= ", nc),
no = paste("< ", nc)))

data$ClAge <- cut(data$Age, breaks = c(0, threshold, 99), right = FALSE)
levels(data$ClAge) <- gsub(x = levels(data$ClAge), pattern = "\\)",

replacement = "\\[")
table(data$ClEnt, data$ClAge)

}
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4. Main results for age estimation

In what follows, we first observe age distribution on a learning subset composed of the pop-
ulations from Bologna, Coimbra and Spitalfields; we derive a possible decision rule for age
estimation from these populations; and finally test this decision rule on two other population
samples (Sassari and Schoten).

### Define learning and test datasets:
learndtf <- subset(sys1, Population %in% c("Coimbra", "Spitalfields", "Bologne"))
sard <- subset(sys1, Population == "Sardaigne")
schoten <- subset(sys1, Population == "Schoten")

4.1. Inspection of the learning metapopulation sample

We first find, on figure 1, that 95% of the individuals exhibiting at least one stage C among
all entheses, are at least 40 years old.

plot_nc(data = learndtf, nmin = 1, col = "gray", q = 0.95,
main = "All 18 entheses, {Bologna + Coimbra + Spitalfields}")

Figure 1: Age distributions of individuals with 0 enthesis at stage C, and individuals with at
least one stage C. Blue squares indicate quantiles of order 5%.

Also, 95% of the individuals exhibiting at least two stages C among all entheses, are
at least 47 years old (Fig. 2). Finally, as shown on Figure 3, there was yet another small
improvement when switching to the individuals exhibiting at least three entheses at stage C:
95% of them are at least 50 years old.

plot_nc(data = learndtf, nmin = 2, col = "gray", q = 0.95,
main = "All 18 entheses, {Bologna + Coimbra + Spitalfields}")
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Figure 2: Age distributions of individuals with 0 or 1 enthesis at stage C, and individuals
with at least two entheses at stage C. Blue squares indicate quantiles of order 5%.

plot_nc(data = learndtf, nmin = 3, col = "gray", q = 0.95,
main = "All 18 entheses, {Bologna + Coimbra + Spitalfields}")

Figure 3: Age distributions of individuals with 0 to 2 entheses at stage C, and individuals
with at least three entheses at stage C. Blue squares indicate quantiles of order 5%.
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4.2. Application to target samples

We consider that we have defined three decision rules on the learning dataset:

• around 95% o�ndividuals with at least one enthesis at stage C, are supposed to be
over 41 years old;

• around 95% o�ndividuals with at least two entheses at stage C, are supposed to be
over 47 years old;

• around 95% o�ndividuals with at least three entheses at stage C, are supposed to be
over 50 years old.

We now test these rules on two target samples, Sassari and Schoten.

4.2.1. Sassari

As shown on Tables 2 to 4, these decision rules also work well on the Sassari sample:

• 95% (19 out of 20) o�ndividuals with at least one enthesis at stage C, are indeed over
41 years old;

• 100% o�ndividuals with at least two entheses at stage C, are indeed over 47 y.o.;

• 100% o�ndividuals with at least three entheses at stage C, are indeed over 50 y.o.

### Test on Schoten population sample
test_rule (sard, nc = 1, threshold = 41)

[0,41) [41,99)
< 1 69 44
>= 1 1 19

Table 2: Confusion matrix for age class and number of entheses having reached stage C in
Sassari population sample (“< 1”: individual with no enthesis at stage C; “>= 1”: individual
with at least one enthesis at stage C).

test_rule (sard, nc = 2, threshold = 47)

[0,47) [47,99)
< 2 90 33
>= 2 0 10

Table 3: Confusion matrix for age class and number of entheses having reached stage C in
Sassari population sample (“< 2”: individual with zero or one enthesis at stage C; “>= 2”:
individual with at least two entheses at stage C).
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test_rule (sard, nc = 3, threshold = 50)

[0,50) [50,99)
< 3 95 32
>= 3 0 6

Table 4: Confusion matrix for age class and number of entheses having reached stage C in
Sassari population sample (“< 3”: individual with zero to two entheses at stage C; “>= 3”:
individual with at least three entheses at stage C).

4.2.2. Schoten

As shown on Tables 5 to 7, these decision rules work well on the Schoten population sample:

• 96.5% (28 out of 29) o�ndividuals with at least one enthesis at stage C, are indeed over
41 years old;

• 96.1% (25 out of 26) o�ndividuals with at least two entheses at stage C, are indeed
over 47 years old;

• 95% (19 out of 20) o�ndividuals with at least three entheses at stage C, are indeed over
50 years old.

### Test on Schoten population sample
test_rule (schoten, nc = 1, threshold = 41)

[0,41) [41,99)
< 1 9 7
>= 1 1 28

Table 5: Confusion matrix for age class and number of entheses having reached stage C in
Schoten population sample (“< 1”: individual with no enthesis at stage C; “>= 1”: individual
with at least one enthesis at stage C).

test_rule (schoten, nc = 2, threshold = 47)

[0,47) [47,99)
< 2 14 5
>= 2 1 25

Table 6: Confusion matrix for age class and number of entheses having reached stage C in
Schoten population sample (“< 2”: individual with zero or one enthesis at stage C; “>= 2”:
individual with at least two entheses at stage C).
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test_rule (schoten, nc = 3, threshold = 50)

[0,50) [50,99)
< 3 17 8
>= 3 1 19

Table 7: Confusion matrix for age class and number of entheses having reached stage C in
Schoten population sample (“< 3”: individual with zero to two entheses at stage C; “>= 3”:
individual with at least three entheses at stage C).

5. Appendix: alternative results for a threshold of 90%

In what follows, we follow the previous procedure, just replacing the 95% threshold by a
90% threshold

5.1. Inspection of the learning metapopulation sample

We first find, on figure 4, that 90% of the individuals exhibiting at least one stage C among
all entheses, are at least 48 years old.

plot_nc (data = learndtf, nmin = 1, col = "gray" , q = 0.90 ,
main = "All 18 entheses, {Bologna + Coimbra + Spital�elds}" )

Figure 4: Age distributions o�ndividuals with 0 enthesis at stage C, and individuals with at
least one stage C. Blue squares indicate quantiles of order 10%.

Also, 90% of the individuals exhibiting at least two stages C among all entheses, are at
least 50.3 years old (Fig. 5). Finally, as shown on Figure 6, when switching to the individuals
exhibiting at least three entheses at stage C, 90% of them are at least 52.5 years old.
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plot_nc(data = learndtf, nmin = 2, col = "gray", q = 0.9,
main = "All 18 entheses, {Bologna + Coimbra + Spitalfields}")

Figure 5: Age distributions of individuals with 0 or 1 enthesis at stage C, and individuals
with at least two entheses at stage C. Blue squares indicate quantiles of order 10%.

plot_nc(data = learndtf, nmin = 3, col = "gray", q = 0.9,
main = "All 18 entheses, {Bologna + Coimbra + Spitalfields}")

Figure 6: Age distributions of individuals with 0 to 2 entheses at stage C, and individuals
with at least three entheses at stage C. Blue squares indicate quantiles of order 10%.
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5.2. Application to target samples

We consider that we have defined three decision rules on the learning dataset:

• around 90% o�ndividuals with at least one enthesis at stage C, are supposed to be
over 48 years old;

• around 90% o�ndividuals with at least two entheses at stage C, are supposed to be
over 50 years old;

• around 90% o�ndividuals with at least three entheses at stage C, are supposed to be
over 52 years old.

5.2.1. Sassari

Tables 8 to 10 show the results of those classifications rules applied on the Sassari population
sample:

• 75% (15 out of 20) o�ndividuals with at least one enthesis at stage C, are indeed over
48 years old;

• 100% o�ndividuals with at least two entheses at stage C, are indeed over 50 years old;

• 66.7% o�ndividuals (4 out of 6) with at least three entheses at stage C, are indeed over
52 years old.

### Test on Schoten population sample
test_rule (sard, nc = 1, threshold = 48)

[0,48) [48,99)
< 1 87 26
>= 1 5 15

Table 8: Confusion matrix for age class and number of entheses having reached stage C in
Sassari population sample (“< 1”: individual with no enthesis at stage C; “>= 1”: individual
with at least one enthesis at stage C).

test_rule (sard, nc = 2, threshold = 50)

[0,50) [50,99)
< 2 95 28
>= 2 0 10

Table 9: Confusion matrix for age class and number of entheses having reached stage C in
Sassari population sample (“< 2”: individual with zero or one enthesis at stage C; “>= 2”:
individual with at least two entheses at stage C).
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test_rule (sard, nc = 3, threshold = 52)

[0,52) [52,99)
< 3 102 25
>= 3 2 4

Table 10: Confusion matrix for age class and number of entheses having reached stage C in
Sassari population sample (“< 3”: individual with zero to two entheses at stage C; “>= 3”:
individual with at least three entheses at stage C).

5.2.2. Schoten

Tables 11 to 13 provide the results for those decision rules applied to the Schoten population
sample:

• 89.7% (26 out of 29) o�ndividuals with at least one enthesis at stage C, are indeed over
48 years old;

• 92.3% (24 out of 26) o�ndividuals with at least two entheses at stage C, are indeed
over 50 years old;

• 95% (19 out of 20) o�ndividuals with at least three entheses at stage C, are indeed over
52 years old.

### Test on Schoten population sample
test_rule (schoten, nc = 1, threshold = 48)

[0,48) [48,99)
< 1 13 3
>= 1 3 26

Table 11: Confusion matrix for age class and number of entheses having reached stage C in
Schoten population sample (“< 1”: individual with no enthesis at stage C; “>= 1”: individual
with at least one enthesis at stage C).

test_rule (schoten, nc = 2, threshold = 50)

[0,50) [50,99)
< 2 16 3
>= 2 2 24

Table 12: Confusion matrix for age class and number of entheses having reached stage C in
Schoten population sample (“< 2”: individual with zero or one enthesis at stage C; “>= 2”:
individual with at least two entheses at stage C).
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test_rule (schoten, nc = 3, threshold = 52)

[0,52) [52,99)
< 3 17 8
>= 3 1 19

Table 13: Confusion matrix for age class and number of entheses having reached stage C in
Schoten population sample (“< 3”: individual with zero to two entheses at stage C; “>= 3”:
individual with at least three entheses at stage C).
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