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Preface

This edited volume compiles the state of the art in research on the geological record
of tsunamis and other extreme-wave events and guides the reader in designing goal-
and site-specific research. It has evolved from an initial idea, first explored by the
editors in early 2016, to final publication online and in print in mid-2020. The moti-
vation for developing a handbook-type compendium on this topic was driven by the
observation that such a unifying volume devoted to this particular discipline, which
lies at the crossroads between sedimentology and tsunami science, was missed by
the scientific community. What we had in mind was an exhaustive work that enables
the broader dissemination and transfer of ideas, methods and concepts associated
with identifying tsunami and other extreme-wave deposits. By doing so, we seek
to promote their application to a wide range of different coastal sedimentary envi-
ronments and their enhanced use for coastal hazard assessment.

The great success of our first thematic session “Geological records of extreme
wave events” organized at the European Geosciences Union (EGU) General Assem-
bly in 2016 was a clear demonstration that there was an active community of re-
searchers who were enthusiastically pushing the tsunami geoscience field forward.
A special issue of the journal Marine Geology related to this EGU session followed
in 2018 (Vol. 396, edited by Ed Garrett, Jessica Pilarczyk, and Dominik Brill)
compiling 16 papers on paleo- and modern tsunami and storm records. With a
wide range of exciting new research being presented at subsequent editions of the
EGU session, we felt that a detailed compendium would be of significant interest
for the continuously growing community. Consequently, this work represents a
true community effort: leading experts were invited to contribute chapters, while
each chapter was peer-reviewed by at least one external reviewer and a minimum
of one of the editors. It is great to see the substantial overlap between the authors
and reviewers of this compendium, and the contributors to the thematic sessions
at the annual EGU General Assemblies.

Two existing edited books, both well established in their scientific communities
and regarded as benchmark literature resources, have inspired and guided the
concept of the present work. Tsunamiites (Elsevier/Amsterdam) of 2008, edited
by Tsunemasa Shiki and colleagues, provides an exhaustive overview on the aspect
of tsunami sedimentology. It also gathers some of the most prominent figures in this
field as authors, but in contrast to the present book, it combines textbook-type chap-
ters with case studies and has a clear emphasis on the older, pre-Quaternary geolog-
ical record. The Handbook of Sea-Level Research (Wiley/Chichester) of 2015,
edited by Ian Shennan and colleagues, follows a proxy-by-proxy structure, with
detailed methodological information to guide research on reconstructing relative
sea-level histories. Such a structure focusing on operational workflows, methodolog-
ical details, opportunities and limitations associated with specific proxies has been
adopted and built upon in the present compendium.
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CHAPTER

Erosive impact of tsunami
and storm waves on rocky
coasts and post-
depositional weathering of
coarse-clast deposits

Dieter Kelletat', Max Engel®>, Simon Matthias May*, Wibke Erdmann’,

Anja Scheffers®, Helmut Briickner”

nstitute of Geography Education, University of Cologne, Cologne, Germany; 2Institute of
Geography, Heidelberg University, Heidelberg, Germany; 3Geological Survey of Belgium, OD
Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium; *Institute
of Geography, University of Cologne, Cologne, Germany; >Southern Cross GeoScience, Southern
Cross University, Lismore, NSW, Australia

Abstract

The spatial distribution of boulder deposits along rocky coastlines provides
important implications for estimating the hazard of extreme waves (storms or
tsunamis). However, rocky coasts are highly dynamic environments, and their
changes through time have to be considered when analyzing the coarse-clast record
and inferring characteristics of past events. This chapter reviews the impact of
extreme waves on the erosion of rocky coasts and the formation of coarse-clast
deposits, evaluates the potential of weathering and erosion features for relative
dating of coastal erosion and boulder transport, and investigates the relevance of
boulder “shrinking” through post-depositional erosion processes.

Keywords: Boulders; Cliff-top deposit; Coastal geomorphology; Relative age dating; Tsunami
deposit.

Introduction

Rocky coasts are shaped by both gradual, long-term, as well as episodic high-energy
wave action. The intensity of coastal transformation and the rate of coastal retreat
are a function of wave climate, bathymetry and coastal topography, rock type and
structure, as well as epi- and endolithic fauna and flora (Benumof and Griggs,
1999). Additionally, relative sea-level variations shift the level of highest energy
transfer between sea and land. The erosion of cliffs and coastal platforms of all lat-
itudes produces clasts of different size and shape, which are potentially transported
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and deposited onshore in distinct patterns during high-energy waves of severe storms
or tsunamis (Williams and Hall, 2004; Scheffers, 2005; Goto et al., 2010; May et al.,
2010, 2015; Etienne et al., 2011; Fichaut and Suanez, 2011; Nandasena et al., 2011;
Engel and May, 2012; Terry et al., 2013; Scheffers et al., 2014; Erdmann et al., 2017,
2018b; Piscitelli et al., 2017; Cox et al., 2018; Biolchi et al., 2019; Fig. 26.1A—D).
Thus, such coastal coarse-clast deposits are spectacular testimony to the hazard of
extreme waves, and their size and spatial distribution may provide pivotal informa-
tion on long-term magnitude—frequency relationships, in particular on maximum
levels of marine flooding over millennial timescales (Etienne et al., 2011; Engel
and May, 2012; Terry et al., 2013). On the one hand, investigations on cliff-top
blocks and boulders require the consideration of cliff transformation and cliff retreat,
in particular on Pleistocene timescales (e.g., Rovere et al., 2017; Mylroie, 2018; Erd-
mann et al., 2018b), since transport distance and local topographic conditions during
the event are crucial for their interpretation. On the other hand, as the rocky shoreline
is constantly subjected to weathering and erosion, the boulders are also modified and
tend to reduce their size over centuries and millennia of subaerial exposure. Since
most approaches of inversely modeling the extent and characteristics of coastal
flooding based on the coarse-clast record rely on the size, shape, and density of in-
dividual boulders, their modification may directly influence the modeling outcome
and, thus, bias hazard assessment. In addition to direct dating approaches using com-
mon dating techniques such as '*C-AMS, U-series, and electron spin resonance
(ESR) (e.g., Terry et al., 2013; Scheffers et al., 2014; Biolchi et al., 2016; Rixhon
et al., 2018), important relative information on the timing of clast emplacement
can also be derived from weathering patterns of the coarse clasts, the intensity of
which is generally a function of age, supratidal position, and lithology. This is partic-
ularly the case for limestone coasts, since post-depositional geomorphological indi-
cators for boulder transport such as secondary rock-pool formation or karst features
are best developed in the carbonate realm (Matsukura et al., 2007; Engel and May,
2012; Terry et al., 2013, Erdmann et al., 2017; Fig. 26.1E).

In this chapter, we (i) review the impact of extreme storm waves and tsunamis on
the erosion of rocky coasts and the formation of coarse-clast deposits; (ii) evaluate
the potential of weathering and erosion features for relative dating of coastal erosion
and boulder transport; and (iii) try to quantify the erosive modification of subaerial
coastal boulders through time.

Erosive impact of tsunamis on rocky coasts

Rocky coasts by their very nature are destructive environments with a comparably
low preservation potential of geomorphological evidence for extreme-wave (and
other) events. The main agents of rocky shoreline disintegration are weathering as
well as gradual (long-term, normal wave conditions), periodic (e.g., storm waves),
and episodic (e.g., strong tsunamis) extreme-wave action. Given their low frequency,
the contribution of tsunamis appears negligible as it is mostly overprinted by gradual
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FIGURE 26.1

Selection of coastal coarse-clast deposits as well as weathering and erosion features
discussed in the text. (A) Boulder ridge in low supratidal position dominated by flat,
imbricated clasts, resting on an inclined shore at Cape Range, Western Australia. (B) Up
to 400 m wide, multimodal rampart of Halimeda sands, other skeletal debris, as well as
massive slabs of Acropora palmata along the windward coast of Bonaire (Washikemba
area) (cf. Scheffers, 2005; Scheffers et al., 2014). (C) Boulder field on top of a reefal
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and periodic wave action. Unsurprisingly, studies on tsunami erosion along rocky
coasts are very rare and only few sources of wider information and discussion exist
(e.g., Bryant and Young, 1996; Bryant et al., 1996; Aalto et al., 1999). These studies
associate potholes, keels, flutes, and grooves along rock coasts with megatsunami
impacts, comparable to similar landforms known from extreme flood events like
meltwater-lake outbreaks. However, they are mostly descriptive and conceptional
and have been challenged by several authors (e.g., Felton and Crook, 2003; Courtney
et al., 2012), bringing up convincing arguments against a tsunami origin of these
erosional features.

The recent megatsunamis in the Indian Ocean in 2004 and along the coast of
Tohoku, Japan, in 2011 provided some limited insights into tsunami erosion on
rocky coasts. Paris et al. (2009) report erosional signatures around Lhok Nga Bay
in northern Sumatra, such as slabs and boulders broken off from the cliff, regolith

<
limestone platform, c. 4—5 m above mean sea level (windward coast, Bonaire) (cf. Scheffers,
2005; Engel and May, 2012; Scheffers et al., 2014). (D) Isolated, overturned boulder resting
on top of an elevated limestone platform along the northern coast of Bonaire (Boka Onima
area). Rainwater seeping through the boulder has led to the growth of microbialites on the
surface of the downward-facing, inactive rock pools, which were sampled for 22°U/Th dating
to derive minimum ages for boulder transport (Rixhon et al., 2018). (E) Reefal limestone
boulder on Bonaire (Boka Onima area) developing karst pipes and other post-depositional
weathering features as relative age indicators (Engel and May, 2012). (F) Cliff formation in an
LGM (Last Glacial Maximum) glacial till deposit, associated with a gently inclined shore
platform in Galway Bay, western Ireland. (G) Subaerial slump along a chalk cliff, England
(50°52/08"N, 0°38'48"E). The image shows an 85 m-high cliff with protalus bulge and
strong back-cutting with a slide at an elevation of +127 m in chalk rock. The scene is 1 km
wide. (H) Receding cliff (18 m high) at the wave-dominated limestone coast of Inishmore,
Aran Islands, western Ireland, with very large cliff-top blocks in the background. (1) Cliff
shape influenced by folding of sedimentary Paleozoic rocks along Shetland Mainland
(Scotland). (J) Sea-urchin indentations on a dislocated limestone boulder in Galway Bay,
western Ireland. (K) Limpet (Patella sp.) indentations on a dislocated limestone boulder in
Galway Bay, western Ireland. (L) Borings of the sponge Cliona sp. on a limestone boulder in
Galway Bay, western Ireland. (M) Boreholes of Lithophaga sp. in massive reefal limestone of a
cliff-top boulder on Bonaire (Rixhon et al., 2018). (N) Rock-pool belt along a low calcareous
sandstone cliff south of Rabat (Atlantic coast of Morocco). (O) Very wide rock pool on the
windward coast of Bonaire, actively shaped by Littorina gastropods (see insert). (P) 1.5 m-
deep Holocene bioerosive notch in reefal limestone at the leeward coast of Bonaire. (Q)
Holocene and last interglacial bioerosive notches at the limestone coast of Gigante Sur
Island, Central Visayas, Philippines. (R) Collapse of an overhanging limestone cliff,
undermined along a shale stratum, at the south coast of Inishmore (Aran Islands, western
Ireland). (S) Overhanging cliff in Carboniferous limestone resulting from higher resistivity
compared to the intertidal shale rocks (Inishmore, Aran Islands, western Ireland).

(G) Credit: Google Earth 4/2015. All photographs owned by the authors.
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stripped from bedrock slopes, and widened natural trenches. Generally, the lack of
high-resolution pre-tsunami topographic data prevents the quantification of erosion,
as also exemplified by a laser scanning-based study of surface change after the 2011
Tohoku Tsunami along the northern ria-type Sanriku coast (Hayakawa et al., 2015).
Extreme runup of up to 40 m in the narrow drowned valleys removed the regolith
cover of bedrock slopes and is estimated to have eroded exposed bedrock surfaces
in the order of millimeters to centimeters. Taking into account the frequency of
strong tsunamis in the region over Holocene timescales, these effects add up to me-
ters or even tens of meters and are considered to be a significant landscape-shaping
factor in the lower ria valleys of the Sanriku coast (Komatsu et al., 2014; Hayakawa
et al., 2015). In the same area, Nandasena et al. (2013) document erosional scars on
steep slopes along with numerous locations where boulders were quarried from
exposed bedrock surfaces.

However, based on our currently limited understanding of the effects of tsunamis
on the rocky coastal realm, major parts of this contribution cover storm-wave im-
pacts and their geomorphological consequences, which have been subject to a
considerably larger number of investigations.

Cliff destruction: episodic versus long-term effects

Mechanisms of cliff retreat: the significance of lithology, gravity
and marine forcing

The formation of cliffs mainly depends on the resistance of the cliff rock, which is in
continuous competition with the hydraulic forces of approaching waves (Sunamura,
1992). Coastal erosion and cliff recession is of particular concern along coastlines
prone to mass wasting (Allison, 1989; Budetta et al., 2000; Lee, 2008; Kline
et al., 2014), and most examples stem from those of less resistant rocks such as
chalk, marls, Neogene marine sediments, or glacial till (Foote et al., 2006; Hénaff
et al., 2006; Dornbusch and Robinson, 2011; Moses and Robinson, 2011; Hurst
et al., 2016; Fig. 26.1F and G). In more resistant rocks, folding, faulting, or bedding
patterns determine pathways of percolating rainwater and/or wave-injected
seawater, ultimately controlling the effects of freeze and thaw cycles, rock dissolu-
tion, and weathering and disintegration intensities (Allison, 1989; Hampton et al.,
2004; Kennedy and Dickson, 2007; Biolchi et al., 2019; Fig. 26.1H and I).
Limestone coasts (Lace and Mylroie, 2013, and contributions therein) are partic-
ularly prone to bioerosive rock-surface sculpturing of mostly centimeter to deci-
meter scale (rarely meter scale), which occurs at inter- to supratidal elevations
(Fig. 26.1J—Q) and ultimately contributes to cliff transformation. Local collapse
of bioerosive notches may occur, which, however, is only of minor importance in
cliff recession. Rock-surface sculpturing results from grazing by gastropods (littor-
inids, limpets) and chitons on endolithic blue-green algae (Cyanobacteria, Chloro-
phyceae), and occurs only at the wave- and splash-affected sections of rock
surfaces (Schneider, 1976; Spencer, 1988; Kelletat, 1997). The most significant
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bioerosive forms along limestone coasts are rock pools on gently sloping or horizon-
tal rock platforms (Fig. 26.1N and O). Rock pools develop through lateral enlarge-
ment of small initial pits by littorinid gastropods, when pools are large enough to
contain water over longer periods of time. Notches occur along steeper cliff sections,
with larger limpets (Patella sp.) or chitons typically involved in their formation
(Kelletat, 1988, 1997; Kogure and Matsukura, 2010; Fig. 26.1P and Q.).

Where gravity overcomes internal rock cohesion, cliff collapses occur. The in-
tensity and characteristics of these gravitational processes depend on the angle of
the cliff face, cliff-base morphology (plunging cliff or rock platform), the coherence
of the cliff rock, and the kinetic energy of the moving rock mass, but also on climate
and hydrology that drive weathering processes. Cliff recession is generally cyclic,
with intermittent slides, slumps, or rock falls, followed by the removal of rock debris
or sediment aprons from the rock platform. Periods of wave erosion at the cliff base
generally alternate with periods where talus sediments protect the cliff toe. For the
British chalk coasts, the residence time of cliff-base talus has been found to be 10—
40 years, and for the more resistant chalk in the environs of Etretat along the coast of
Normandy about 25—50 years (Foote et al., 2006; Hénaff et al., 2006; Dornbusch
and Robinson, 2011; Kline et al., 2014; Fig. 26.1G). More resistant limestone
(e.g., along the western Ireland cliffs, Aran Islands, Galway Bay) is typically
affected by the collapse of upper cliff sections, where joints are widened by subaerial
dissolution or where undermining of limestone units by erosion of underlying less
resistant rock types, e.g., shales, occurs (Erdmann et al., 2018b; Fig. 26.1R and
S). In addition, cave systems along limestone coasts may represent locations of
intensified cliff collapse (Hampton et al., 2004).

The efficiency of marine impact in terms of erosion depends on bathymetry,
wave climate, and the exposure of a site, which determine the character and form
of waves and the impact of wave action. Continuous wave impact with cyclic
build-up and release of wave pressure reduces the strength of cliff rocks over
time, even if no sediments for mechanical abrasion are available. At cliffs with
very resistant rocks, where no sediments are entrained in the wave, hydraulic
action—both swell waves and turbulent bores—may be the only destructive force,
supported by compressed air in cracks and joints (Noormets et al., 2004). These
cracks are gradually widened and predefine clasts, which are either quarried and
transported toward the cliff top during extreme-wave conditions (e.g., Noormets
et al.,, 2004; Fichaut and Suanez, 2011; Engel and May, 2012; Erdmann et al.,
2017, 2018b; Kennedy et al., 2017) or end up as debris at the cliff toe through grav-
itational processes (Bird, 2016; Figs. 26.1A—D and 26.2A—C'Figs. 26.2A). Noor-
mets et al. (2004) consider a minimum of 60% of fracturing necessary to enable
detachment of large clasts from the cliff edge by the impact of breaking swell waves,
even though their power is in most cases not sufficient to transport the clasts onto the
cliff top. Herterich et al. (2018) identify bending stress imposed by the wave impact
and filling of pre-existing cracks to result in the propagation of microcracks up to
complete fracture and quarrying. Maximum dynamic shock pressures applied to
the edge of the shore platform may only last 0.1 s (Earlie et al., 2015) and result
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FIGURE 26.2

Selection of coastal coarse-clast deposits as well as weathering and erosion features
discussed in the text. (A) Pattern of cliff retreat in horizontally bedded Carboniferous
limestone, with onshore dislocated boulders (Inishmaan, Aran Islands, western Ireland).
(B) Steep cliff formation in highly resistant limestone along the wave-dominated coast of
Inishmore (Aran Islands, western Ireland). (C) Well-rounded large talus boulders at a cliff
base as remnant of a past rockfall (limestone, inside Galway Bay, western Ireland). (D)
Wave-cut platform in folded limestone rocks near Southerndown, Wales, UK. (E)
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from relatively short-period (~8s) and steep deep-water waves (height/
length = 0.06—0.04). While such shorter waves possess higher quarrying capacity
due to the higher pressure exerted on the face of the cliff as compared to those of
longer waves, the capacity to transport these boulders landward increases with
wavelength and is highest in a tsunami bore (Noormets et al., 2004).

Over time, rock platforms may develop in front of cliff toes due to wave-driven
back-cutting of the cliffs (Stephenson, 2001; Foote et al., 2006; Hénaff et al., 20006;
Dornbusch and Robinson, 2011; Regard et al., 2012; Fig. 26.2D and E). Since the
nearshore water depth directly influences height, power and inundation depth of
waves, rock platforms in turn diminish wave energy and wave erosion. Furthermore,
sea-level fluctuations and tectonics play a crucial role in the evolution of wave-
impact patterns, cliff morphologies, and their retreat.

<

Ballineden, County Sligo, Ireland, at 54°/N and 8°41'W; this promontory fort is now still
160 m long. The remains at its tip date from Neolithic times, whilst it was enlarged during Iron
Age (500 BCE to turn of eras). (F) Iron Age promontory Fort Dun Duchathair (“Black Fort”)
at +26 m on a limestone promontory of Inishmore, Aran Islands, western Ireland (Google
Earth 5/2010). (G) Bioerosive notch with an up to 40 cm-wide bench constructed by the rock
oyster Saccostrea cucullata, exposed during low water along the tower karst islands of
southwest Thailand. (H) A wave-emplaced fossil microatoll became the nucleus of an active
fringing microreef inside the moat of an elevated intertidal reef platform of Eastern Samar,
Philippines, representing a rare example of post-depositional size increase. (I) Pedestal
resulting from protection of an erratic boulder on limestone and denudation of the cliff top
since deglaciation after the LGM (Inishmore, Aran Islands, western Ireland). (J) Low pedestal
formed beneath a massive limestone block (a-axis 9 m, weight c. 180 t) before it was shifted
to its present position during Typhoon Haiyan in 2013 (Eastern Samar, Philippines) (May
etal., 2015). (K) Dense cover of lichen (Caloplaca marina) on an old limestone boulder ridge
inside Galway Bay, western Ireland. (L) Landward-increasing lichen growth (light spots) on a
cliff-top boulder ridge near Eshaness, Shetland Islands’ Mainland, and dense lichen cover on
wave-emplaced boulders in Ireland (see insert). (M) Limestone boulder on top of an uplifted
(emerged) intertidal reef platform in Eastern Samar (Philippines), heavily overgrown by
bushes and small trees. (N) Two rock pool generations in a tilted, wave-emplaced limestone
boulder at Cape Bon, Tunisia. The bottom of the original, inactive rock pool is steeply
inclined, while since deposition another horizontal one has formed, indicating that quarrying
and transport occurred stepwise some time ago (May et al., 2010). (O) Striations (scratch
marks) in different directions indicating contact of boulders with limestone bedrock during
saltating or rolling transport (Erdmann et al., 2018a). (P) Extreme post-depositional karstic
weathering pattern of a wave-emplaced limestone boulder on top of an uplifted (emerged)
intertidal reef platform in Eastern Samar (Philippines). (Q) Post-depositional solutional
cavities and dense lichen cover on a wave-emplaced limestone boulder at the south coast of
Inishmaan, Aran Islands, western Ireland. (R) Wave-emplaced boulder split into two pieces
during or after deposition on an elevated reefal platform on the windward coast of Bonaire
(Scheffers, 2005; Engel and May, 2012).
(D) Credit: Google Earth. (E) Credit: Google Earth 5/2010. All photographs owned by the authors, apart from map
data (D—F): Google Earth, Digital Globe.
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In general, the spacing of joint patterns best correlates with erosion rates, i.e., a nar-
row joint pattern typically results in fast erosion and cliff retreat. Cliff recession and
rock platform development occurs due to the continuous impact of both normal, fair-
weather waves, and more episodic events such as high-energy storm waves or
tsunamis. By measuring the episodic changes in cliff-top failure and calculating
related mass-wasting cubatures using terrestrial laser scanning or drone-derived
orthophotos and digital elevation models, cliff retreat during single events may be
estimated, which can be significantly higher than the long-term values (Table 26.1)

Table 26.1 Comparison of calculated cliff-retreat rates from different rock
types and exposures, measured with different methods.

Region

England

Worldwide
Worldwide

Mediterranean,
Black Sea

Mediterranean,
Black Sea
England
England

New Zealand

England

England
Aran Islands

World

England

England

Rock type

Hard rock

Soft rock
Hard rock
Limestone

Marble
Varying
Varying
Volcanic
Chalk

Chalk
Limestone

Hard rock

Chalk

Chalk

Methods (survey
period)/data source

Terrestrial Laser
Scanning/LiDAR
(16 months)

Not specified
Not specified
Not specified

Not specified

Long term

LiDAR

Rock platform width
Long term, '°Be

Long term, historical
Boulder—ridge mass

Rock platform width

Cliffs

Rock platform width

Rate
(cm/
year)

1-7

>100
<1
6—80

0.3

5—133
0.156-3

0.9-10

30-50

0.3-0.4

Reference

Rosser et al.
(2005)

Bird (2016)
Bird (2016)
Furlani et al.
(2014)

Furlani et al.
(2014)

Earlie et al.
(2015)

Earlie et al.
(2015)
Kennedy and
Dickson (2007)
Hurst et al.
(2016)

May (2005)
Erdmann et al.
(2017)
Erdmann et al.
(2018b)
Moses and
Robinson
(2011)

Moses and
Robinson
(2011)

An exhaustive compilation of older, pre-1990 data can be found in the Appendix of Sunamura (1992).

.
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(e.g., Rosser et al., 2005; Regard et al., 2012; Katz and Mushkin, 2013; Earlie et al.,
2015; Bird, 2016; Cullen et al., 2018). For instance, based on multi-temporal LiDAR
measurements, Katz and Mushkin (2013) found that over a 13-month period with
one exceptional winter storm, 70% of the total erosion of a weakly cemented aeo-
lianite cliff at the coast of Israel occurred during the storm event and the four sub-
sequent months.

However, extrapolations from such monitoring studies covering the range of
years to a maximum of a decade may only be representative if local environmental
conditions remain similar for the extrapolated period. Consequently, short-term
direct measurements of changes along the cliff face may contrast with cliff-retreat
rates over centennial to millennial time scales derived by extrapolating mass-
wasting volumes and frequencies. Using the volume of onshore cliff-sourced
coarse-clast deposits is also inappropriate, since only a variable fraction of cliff-
detached material is transported onshore, while most of it ends up in the foreshore
by gravitational processes (e.g., Allison, 1989; Budetta et al., 2000; Rosser et al.,
2005; Hall et al., 2008; Regard et al., 2012; Earlie et al., 2015). The application
of terrestrial cosmogenic radionuclides such as '’Be may bridge this gap, as it allows
for estimating long-term denudation rates as well as spatial and temporal changes
directly at the cliff face (Hurst et al., 2016).

Likewise, the width of (abrasive) rock platforms in front of cliffs may be used to
determine cliff retreat rates, which generally depend on wave climate and nearshore
bathymetry, exposure, coastal topography, and rock characteristics (e.g., Stephen-
son, 2001; Foote et al., 2006; Hénaff et al., 2006; Dornbusch and Robinson,
2011). Rock platforms are relatively wide in coastal regions with frequent and strong
storms, but narrow or absent at tropical latitudes with extreme but only occasional
storms such as tropical cyclones. A 200 m-wide rock platform—if developed over
6000 years of a relative sea-level highstand—may indicate an average rate of cliff
retreat of about 3.5 cm/year, which is in the same order of magnitude as rates
directly measured at sedimentary rocks (Table 26.1). However, since friction and
shoaling diminish wave energy on larger rock platforms, cliff recession will become
slower over time, if sea level and tidal range remain similar, challenging their indic-
ative value for cliff-recession rates.

Archaeological hints for coastal and cliff-retreat rates

Besides geochronological or high-resolution monitoring approaches, (pre-)historic
man-made deposits and/or buildings such as shell middens, earthworks, forts, cas-
tles, or lighthouses (archaeologically, historically, or radiometrically datable; e.g.,
Bromhead and Ibsen, 2006), placed in delicate positions along cliffs, may provide
clues to cliff-erosion patterns and rates (Fig. 26.2E and F). Some may even date
back to the Neolithic and offer constraints on the position of coastlines over the
entire period of the postglacial sea-level highstand. On the Aran Islands (western
Ireland), however, it is debated if an Iron Age fort located on a promontory and close
to the cliff edge indicates either low rates of cliff retreat (Scheffers et al., 2009;



Erdmann et al., 2018b) or fast cliff erosion if it was once founded as a ringfort further
inland (Williams, 2004; Hansom, 2005; Fig. 26.2F). As more than 100 constructions
of this age (about 2500—2000 BP) still exist in strongly exposed promontory settings
along western Irish shorelines characterized by resistant sedimentary and igneous
rocks, at least over this time span cliff retreat was probably on the order of only a
few cm/year (Table 26.2). The same conclusions can be drawn from the preservation
of glacial erosive landforms in the littoral environment and slope-over-wall cliff

Cliff destruction: episodic versus long-term effects

types (see examples in Bird, 2016).

Table 26.2 Rates of cliff retreat as measured from small-scale karst
morphologies (Crete), size and preservation of notches (Crete, Thailand), and
(pre-)historical promontory forts (W Ireland, N Ireland).

Region

Inishmaan
(Ireland)
Aonghasa
(Ireland)
Inishmore
(Ireland)
Crete
(Greece)
Crete
(Greece)
Crete
(Greece)
Crete
(Greece)
Phang-
nga
(Thailand)
Phang-
nga
(Thailand)
Western
Ireland

North
Ireland

Rock type

Limestone
Limestone
Limestone
Limestone
Limestone
Limestone
Aeolianite

Limestone

Limestone

Iron Age fort;
limestone,
greywacke

Medieval
castle; basalt

Time
frame
(years)

16,000
6000
6000
1650
1650

120,000
1650

6000

120,000

2500

800

Max. total
distance

(m)
100

5
40
0.05
0.1
10

0.2

Max. 25-
50

Total
average
rate (cm/
year)

0.6
<0.1
0.7
0.003
0.006
0.008
0.01

Max. 0.02

Max. 0.02

Max. 1-2

0.6

Reference

Erdmann
et al. (2018b)
Erdmann
et al. (2018b)
Erdmann
et al. (2018b)
Kelletat (1996)

Kelletat (1996)
Kelletat (1996)
Kelletat (1996)

Scheffers
et al. (2012)

Scheffers
et al. (2012)

Scheffers
etal.,
unpublished
data
Scheffers
etal.,
unpublished
data
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Rates of rock weathering and dissolution

The intensity of bioerosion in pure limestone is comparably high, often occurring at
a rate of >1 mm/year (Kelletat, 1988; Spencer, 1988). The formation of 2 m-wide
rock pools and 1 m-deep notches from bioerosion thus requires >1000 years, indi-
cating quasi-stability of the coast for a similar time span.

On the other hand, calcareous algae like Lithophyllum sp., Lithothamnium sp.,
Neogoniolithon notarisii, vermetids (tubeworms) like Vermetus sp., Dendropoma
petraeum or Galeolaria caespitosa, or rock oysters (e.g., Crassostrea amasa) may
construct hard and protective covers (crusts, rims, or trottoirs) or even real bio-
hermata on coastal rocks with growth rates reaching >1 mm/year (Kelletat, 1997;
Fig. 26.2G and H). Their strict vertical zonation forms a sharp boundary between
the levels of (maximum) bioerosion and bioconstruction. If dated by 4C or 2Th/
U, such incrustations also allow for quantifying the intensity of erosion over time.

The rate of surface lowering of massive limestone by dissolution in a terrestrial
environment is rather similar in different climates and amounts to about
0.02—0.03 mm/year on average (Hiuselmann, 2008; Table 26.3). In inter- to supra-
tidal coastal environments, where downwearing is usually measured by using stan-
dardized carbonate weight-loss tablets (Spencer, 1988), micro-erosion meters
(MEM) (over months or a few years) (Kelletat, 1988; Furlani et al., 2009; Cullen
etal., 2018), structure-from-motion photogrammetry (Cullen et al., 2018), or surface
exposure dating by cosmogenic nuclides (in limestone: *°Cl) (Rixhon et al., 2018),
the contribution of bio-agents leads to significant variations in downwearing rates,
ranging from low values similar to terrestrial environments up to several mm per
year (Spencer, 1988). By setting the height of rock pedestals below glacial erratics
(150—300 mm) in relation to the timing of deglaciation in the Aran Islands of west-
ern Ireland (~ 16 kyrs ago), Erdmann et al. (unpublished) found a rather low rate of
0.01—0.02 mm/year, ranging slightly below those found elsewhere in similar envi-
ronments (Goldie, 2005) (Fig. 26.2.1).

For Kikai-jima, SW Japan, a mean lowering rate of 0.205 mm/year was inferred
over the last 6000 years for the reefal limestone platform around pedestals protected
by large wave-transported boulders (Matsukura et al., 2007) (cf. Fig. 26.2J). In the
Caribbean, such pedestals of up to 0.7 m have formed on Bonaire (Engel and May,
2012) and Barbados (Scheffers and Kelletat, 2006). Denudation rates of exposed
supralittoral limestone terraces in the Caribbean were estimated to be in the range
of 0.01—0.02 mm/year on Curagao (Focke, 1978) and 0.021 4 0.005 mm/year for
the same landforms on the neighboring island of Bonaire (Rixhon et al., 2018).
Donn and Boardman (1988) report remarkably high rates of surface lowering in
supralittoral limestone of Andros Island, Bahamas, of up to 1.4 mm/year. In a soft
siltstone environment along the more temperate Portuguese coast, Oliveira (2017)
found rates between 0.03 and 0.2 mm/year by multi-year micro-erosion meter mea-
surements. Furlani et al. (2014) compiled values of intertidal to supratidal limestone
bedrock lowering in the Mediterranean basin, ranging from 0.001 to 2 mm/year. In
general, young coral limestones with a high porosity should result in higher lowering
rates (and pedestal dimensions) compared to more dense and resistant Mesozoic or
Paleozoic limestones.



Table 26.3 Compilation of terrestrial dissolution rates on exposed limestone (MEM = micro-erosion meter).

Time frame Dissolution rate (mm/
Region Rock type Method (kyrs) year) Reference
England Mesozoic limestone | Erratic 18 0.027 Sweeting (1966)
pedestals
England Mesozoic limestone | Erratic 18 0.002—0.0086 Goldie (2005)
pedestals
Japan Pleistocene reef Erratic Few 0.1-0.3 Matsukura et al. (2007)
rock pedestals
Ireland Paleocene Erratic 16 0.0093—-0.0186 Erdmann et al., unpublished
limestone pedestals
[taly Eocene limestone MEM Few 0.01—-0.035 Forti (1984)
[taly Tertiary limestone MEM Few 0.02—0.03 Cucchi et al. (1995)
Australia Eocene limestone MEM Many 0.006—-0.013 Smith et al. (1995)
Alaska Mesozoic limestone | MEM Many 0.04 Allred (2004)
Switzerland | Mesozoic limestone | MEM Many 0.007—-0.021 Hauselmann (2008)
[taly/ Tertiary limestone MEM Many 0.009-0.018 Furlani et al. (2009)
Croatia
Croatia Tertiary limestone MEM Many 0.01-0.03 Taborosi and Kazmér (2013)
Norway Paleozoic limestone | Tablets Few 0.03 Lauritzen (1990)
Austria Mesozoic limestone | Tablets Many 0.01 Plan (2005)
Svalbard Paleozoic limestone | Tablets Few 0.004—-0.035 Krawczyk and Pettersson,
2007
Japan Mesozoic limestone | 6CI Many 0.02—0.06 Matsushi et al. (2010)
England Mesozoic limestone | 36Cl Many 0.0333 Vincent et al. (2010)
China Mesozoic limestone | %¢Cl Many 0.017—0.047 Xu et al. (2013)
France Mesozoic limestone | %¢Cl Many 0.035 Zerathe et al. (2013)
France Mesozoic limestone | %¢Cl Many 0.03—0.04 Godard et al. (2016)

Data from different continents, elevations, and climates are rather congruent on dense old limestones and significantly higher only in reef rocks with a different texture
and higher porosity.
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Relative age estimation for boulder transport

While cliff retreat in less resistant rocks may be too fast for the long-term preserva-
tion of cliff-top deposits, rocks with high resistivity tend to develop rather steep
cliffs that are stable over long time periods and erode with very low rates (Tables 26.1
and 26.2). In such settings, the accumulation of coarse clasts has led to the formation
of a variety of deposits since the deceleration of global eustatic sea-level rise in the
mid-Holocene. Most of these coarse-clast records—mostly ridges, ridge sequences,
ramparts, or boulder fields (Figs. 26.1A—D and 26.2A and B)—can be found along
rocky shorelines with low to moderately high and particularly stepped cliffs, or
along coastlines with medium slope angles or elevated intertidal reef platforms
(Chapter 24). However, whether their formation results from continuous accumula-
tion throughout the Holocene or from a few extreme-wave events often remains
under debate.

Wave-emplaced (cliff-top) boulders are exposed to various exogenic processes
after deposition. Where direct dating of marine organisms attached to the clasts
(e.g., boring bivalves, vermetids; Fig. 26.1K—M) is not possible or problematic,
relative age indicators are at least as valuable and important. These relative age in-
dicators are directly related to exposure time (i.e., age of clast dislocation) and
include geomorphological (rock-pool generation, karst features, impact marks) as
well as biological (soil or lichen and other vegetation cover) evidence
(Fig. 26.2K—N).

However, weathering patterns are rock- and site-specific. For instance, fragmen-
tation by frost weathering may refresh forms of clasts over rather short time
intervals. On the other hand, granites and similar crystalline rocks are subjected
to a more rapid surface disintegration in warm and humid climates compared to
cold ones.

Vegetation, lichen cover and microbialites

Few studies have systematically used lichen growth (Fig. 26.2K and L) as a function
of time to infer the age of a boulder deposit. Oliveira (2017), who provides a detailed
explanation on the methodological approach, collected lichen structures (Opegrapha
durieui) from rock surfaces of known age along the Portuguese coast to establish a
local growth curve applicable to lichen findings on boulder deposits associated with
extreme-wave impacts. In her study, boulder transport is dated from years to cen-
turies, even though error margins may exceed +30%.

In an area with rapidly growing lichens (Verrucaria maura, Caloplaca marina,
Lecanora sp.) along the high-energy coasts of Ireland and Scotland, Hall et al.
(2008) choose a more qualitative approach and estimated boulder-ridge inactivity
on decadal scales based on lichen cover. For instance, on old volcanic rocks of
the Shetland Islands, age estimates are based on observations that a 50—100%
rock-surface cover of black V. maura takes a minimum of 70 years (Fig. 26.2L).
Similarly, Scheffers et al. (2009) and Erdmann et al. (2017, 2018b) use dense lichen
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carpets on limestone (Caloplaca marina) as evidence for decadal to centennial inac-
tivity of single boulders or boulder ridges on the Aran Islands, Ireland.

In a pioneering attempt to cross-date boulder deposition on Bonaire, Dutch Antil-
les, Rixhon et al. (2018) identified carbonate microbialite inside a former rock pool at
the bottom side of an overturned boulder, which owes its formation to carbonate-
enriched rainwater seeping through the boulder and a moist and warm microclimate
at the shielded underside. Despite impurities of gypsum coatings and organic remains,
the Mg-calcite-, and aragonite-dominated microbialite was conclusively dated to c.
1230 years ago by *°Th/U dating, representing a useful alternative approach in dating
coarse-clast transport of carbonates (see also Chapter 31).

Where debris lines or even boulder belts from singular extreme runup events
cover existing higher vegetation or their remnants (e.g., along Lituya Bay, Alaska;
Miller, 1960), this may also provide age constraints. Inactive boulders may become
heavily overgrown by vegetation (e.g., boulder #1 in Frohlich et al., 2009), providing
minimum ages for transport (Fig. 26.2M).

Rock pools and other hioerosive indicators

Among the most evident geomorphological relative age indicators are pre- and
post-depositional rock-pool generations, which are best recorded in clasts composed
of massive limestone (Fig. 26.2N). In many cases, cliff-top clasts derive from the
(splash- and spraywater-influenced) inter- to supratidal cliff-edge sections along
rather low-lying cliffs, where rock pools shaped by littorinids are present. Where
limestone boulders are detached and removed from these locations, their biogenic
formation immediately stops, and the rock-pool surface is then subjected to dissolu-
tion by rainwater (see examples in May et al., 2010; Engel and May, 2012).
Although much less intensive compared to bioerosion (0.02—0.03 mm/year on
average), carbonate dissolution changes the characteristic round and closed form
of bioerosive rock pools, e.g., by dissolving a new horizontal basin (second gener-
ation) inside the tilted rock pool (first generation), or by the formation of an overflow
channel draining the old rock pool (Kelletat and Schellmann, 2002; Erdmann et al.,
2018b; Fig. 26.2N).

The cross-dating approach of Rixhon et al. (2018) on Bonaire allows for a com-
parison of dimensions of post-depositional karst features with radiometric data. For
instance, a vertical dissolution pipe of a width of several cm (Fig. 26.1E; see also
Fig. 26. in Engel and May, 2012) or a second rock pool generation, a few cm
deep and c. 20—30 cm wide (see Fig. 26. in Engel and May, 2012), has evolved
in boulders likely inactive for at least 1500 years (Rixhon et al., 2018).

Striations on rock may be used to identify impacts or changes over one to
twodecades, in particular during post-event inspections (Fig. 26.20). Observations
over several years additionally allow classifying these intensities, site- and rock-
specifically (Erdmann et al., 2018a).
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Long-term modification of coastal boulders

Weathering of onshore clasts is difficult to quantify as it depends on structure,
texture and mineral composition, exposure to precipitation, radiation and wind, sta-
bility of setting, age, and other factors. Theoretically, non-carbonates can be tested
with a Schmidt Hammer or similar devices for the resistivity of their outer parts
(Goudie, 2006), while carbonates are subjected to rainwater dissolution dominating
all other weathering processes. Its intensity mostly depends on individual facies
composition and density.

Erosive processes summarized earlier taking their toll on coastal boulder deposits
have to be considered if the size of a boulder is used to infer flooding characteristics of
past high-energy wave events (Nandasena et al., 2011; May et al., 2015; Biolchi et al.,
2016; see Chapters 28 and 29). Even though these effects can only be roughly quan-
tified for reefal limestone boulders exposed to inter- or supratidal conditions over cen-
turies to millennia, as possibly in various Caribbean cases (Scheffers, 2005; Scheffers
and Kelletat, 2006; Scheffers et al., 2014; Rixhon et al., 2018), size reduction of boul-
ders may amount to decimeter scales in all three main axes, if denudation rates pre-
viously cited are taken into account. In temperate environments, where boulders have
been identified to remain stable over longer periods, such as the Aran Islands (Erd-
mann et al., 2018b), these losses are expected to be smaller.

Recent observations, however, made on an elevated reef flat in Eastern Samar,
Philippines (Boesl et al., 2019), reveal examples where late Holocene boulders in
intertidal position have almost entirely lost their subaerial part to (microbio- or abra-
sive) erosion (Fig. 26.2P and Q), while others seem relatively unaffected. The degree
of weathering in this setting is likely a function of time, vertical position, distance to
the platform edge, texture of reefal lithofacies, availability of sediments, and local
density of the boulder cluster. In some cases, coral growth even leads to a size increase
of clasts (Fig. 26.2H). In addition, boulders may break up during transport or deposi-
tion (Fig. 26.2R) (Scheffers, 2005; Engel and May, 2012; Piscitelli et al., 2017).

Conclusions

After decades of research on coastal coarse-clast deposits, methods and approaches
in data acquisition are still somewhat heterogeneous. Boulder properties (rock type,
form, size, mass, spatial distribution etc.) are mostly in the focus, accompanied by
statistical analyses and interpretations, as well as inverse and forward numerical
models of the transport mode and process. In many cases, however, information
on the dynamic landscape surrounding the coastal boulders (relief, surface charac-
teristics, exposure, nearshore bathymetry, and many more) is neglected. The hunt
for the largest boulder may remain as the most important result, and speculations
on transport processes, especially in the case of “megaboulders” from “superstorms”
find their way even into new interpretations of climate change and coastal hazards in
the future. Another deficit in coastal boulder research may be its concentration on a
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time frame of the younger Holocene, while reconstructions of much older processes
and deposits with a much longer history of transformation are in their infancy (see
discussion in Hansen et al., 2016; Rovere et al., 2017; Mylroie, 2018).

Identifying boulder transport inland and against gravity by waves in the first or-
der is a question of geomorphology rather than sedimentology. Elevation and relief
including nearshore bathymetry, rock type and age, wave climate, sea-level history,
cliff-retreat processes and rates, hints to the age of boulder deposits; post-
depositional erosion and other factors have to be considered for conclusions on
past wave processes. Through investigations of dislocated coarse clasts alone it is
not possible to reconstruct the dominant processes and their intensities and fre-
quencies, as the dislocation itself depends on a wide range of environmental factors
in their multiple and mutual relationships. Additionally—depending on the scientific
question—the spatial and temporal dimensions are important for such analyses.

Cliff retreat through mostly gravitational processes provides an important source
for coastal boulders and is mostly a cyclic process on decadal scales. It is driven by
the interplay of both long-term impacts of regular short waves and periodic to
episodic, much more powerful extreme waves of severe storms or even tsunamis.
While the former are more efficient in quarrying boulders, the latter have higher ca-
pacities to shift them. Deciphering and quantifying the contribution of extreme-
wave events to rocky-shoreline disintegration, however, is hardly possible at present
due to the lack of specific case studies.

Rates of (bio-)mechanical and (bio-)chemical downwearing and erosion along
highly resistant rocky coasts are highest and best studied in tropical carbonates.
Rates vary along vertical and lateral subzones of the coast but reach very high rates
of >1 mm/year in the supratidal zone. Having these site-specific differences in
mind, the size of post-depositional erosive features associated with boulders such
as rock pools, karren, or karst pipes may provide relative age estimates of boulder
transport; likewise, post-depositional lichen cover may act as a chronometer. For
boulders from subaerial pre-transport settings, different generations of such features
need to be considered in this case.

The post-depositional changes of individual boulders related to erosion may—on
mid- to late-Holocene time scales—amount to several decimeters for the main
boulder axes. Likewise, boulders may have broken up during transport or deposition.
This certainly needs to be taken into consideration if boulder size is used to infer
hydraulic characteristics of the transport event.

As in other landscapes, the importance of one extreme event depends on the en-
ergy of former events and the time span between events: coastal or cliff retreat by
storm waves may be extreme, if weathering has weakened rock structure and texture.
If this material is dislocated, the next events (even if much stronger) will be less effi-
cient. Good examples for these conditions are rock falls at cliffs, which may produce
talus deposits. These often comprise large boulders and debris protecting the cliff toe
and part of the cliff face. A sudden cliff retreat may follow decades or even centuries
of stable conditions at cliff faces and cliff tops, before the talus is worn away by ma-
rine forces (see examples in Erdmann et al., 2017).
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Several potential processes may contribute to boulder transport onshore, in
particular since we mostly discuss a time frame of thousands of years. None of these
processes (frequent waves, rare severe storm waves and bores, infragravity waves,
tsunamis) can be excluded at the beginning of any investigation. They may only
be eliminated step by step in the course of research at a specific site.
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