


FIG. 4 Hepacivirus co-infections in rodents. Circular ML tree of all available (n = 115) and novel

(n = 56) hepacivirus genomes. Silhouettes indicate hosts and are coloured according to their broader host

type: bats (green), birds (yellow), cartilaginous fishes (lime green), cattles (brown), dog (grey blue), equids

(lilac), humans (peach orange), lizards (steel blue), lungfish (red), possum (pastel pink), primates (light

blue), ray-finned fish (fuchsia), rodents (salmon), shrew (plum), turtle (marine blue). Interspersed lines

connect the RHV genomes obtained from the same animals (co-infections). For example, rodent individual

CRT352 harboured two hepaciviruses with GenBank accession numbers: MN587654 and MN587655.

patterns (Fig. 5), suggesting again that these viruses have frequently jumped rodent hosts through-

out their evolutionary history and that they may transmit relatively easily between different rodent

species and genera under the appropriate ecological opportunity.
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FIG. 5 Tanglegram of rodent hosts and their hepaciviruses. The topology of the host tree was recon-

structed using the cytochrome b gene from 21 rodent species (left phylogeny). For the viral reconstruction

we used the rodent subset of our genome-wide alignments (right phylogeny) and we highlighted the novel

RHV genomes in turqoise. Lines connecting the two phylogenies represent an association between the

rodent host species and their identified hepaciviruses. Blue lines correspond to individuals harbouring mul-

tiple hepaciviruses, while rodent species highlighted in a caramel colour represent the novel hosts found

carrying hepaciviruses in our study.
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Intraspecific recombination, prevailing negative selection and absence of temporal signal

With our additional RHV sampling, we assess recombination within host lineages (those lin-

eages specific to a host type), where co-infections are more likely as indicated by our findings in

the Lophuromys genus, and where high sequence divergence is less of a cofounding factor. We

performed comparative analyses on host-specific data sets with relatively limited and comparable

genetic diversity (Supplementary Figure 2). Formal testing using the PHI-test (Bruen et al., 2006)

provided significant evidence for recombination in the bovine, equine, and the rodent I and III lin-

eages (p < 0.01), but not in the three HCV data sets (1a, 1b and 3a) we included for comparison.

A substantial number of intraspecific recombinants were identified in rodents, with the high-

est proportion in strains circulating in the rodent III lineage. However, we did not detect any

significant evidence for recombination among RHV genomes within any of the co-infections we

identified. These results were also confirmed by a variety of methods implemented in RDP4 (Mar-

tin et al., 2015). For more details on specific recombinants and mosaic patterns found in each host

lineage, we refer to the Supplementary information.

By focusing on specific host lineages, we can also perform genome-wide comparative analyses

of selective pressure. At the interspecific level, such analysis would only be able to focus on con-

served parts in which third codon positions may still suffer from saturation (Thézé et al., 2015).

Because the presence of intraspecific recombination complicates widely-used phylogenetic codon

substitution methods, we adopted a population genetic approach to estimate the ratio of nonsyn-

onymous (dN) over synonymous (dS) substitutions in the presence of recombination (Wilson and

McVean, 2006) (Fig. 6). The genome-wide estimates of dN/dS ratio (or ω) indicate a generally

strongly negative selective pressure with average values ranging from 0.015 to 0.035 in the non-

human hosts and 0.055 to 0.067 in the human host (grey horizontal bars in Fig. 6 with a Y-axis

on a log-scale). The bovine data set was the only non-human data set for which the site-specific

estimates provide evidence for two sites with an ω value significantly larger than 1. In contrast, a

non-negligible number of positively selected sites (ranging from 20 to 25) was consistently iden-

tified in the HCV data sets, primarily located in the antigenically-important E1/E2 gene region.

Because hepacivirus evolutionary rates have only been estimated for HCV, we here explore how

informative current sampling in other host lineages is about the tempo of hepacivirus evolution

while accounting for recombination (cfr. Methods). Using a recently developed test that compares

the fit of a model that incorporates sampling time (the ‘dated tip’ model) to a model that assumes
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FIG. 6 Site- specific variation of selection pressure in hepaciviruses. Estimates ofω in different animal

hosts of hepaciviruses using omegaMap (Wilson and McVean, 2006). Equine and rodent hepaciviruses

show no positively selected sites across their genome. For bovine hepaciviruses only two sites evolve under

positive selection. HCV genotypes 1a, 1b and 3a indicate statistically significant positive selection pressure

in 22, 25 and 20 sites respectively.
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sampling time is uninformative (all sequences are sampled contemporeanously) (Duchene et al.,

2019), we provide formal evidence that there is no sufficient temporal signal in bovine, equine

and the two rodent lineages tested (Tab. 1) In the different HCV data sets on the other hand,

temporal signal is consistently supported by a log Bayes factor support > 3. This discrepancy

is likely explained by the difference in sampling time ranges for most data sets. Although the

equine lineage has the broadest sampling time range, it is highly unbalanced with three closely

related donkey viruses sampled in 1979 and all other viruses sampled between 2011 and 2016

(Supplementary Figure 6).

Lineage # of dated sequences Sampling time range
BETS ln Bayes factor

(dated vs contemporaneous)

Bovine 14 2013 - 2017 0.26

Equine 22 1979 - 2016 -5.6

Rodent I 11 2010 - 2013 0.1

Rodent III 36 2010 - 2013 -0.28

HCV1a 35 1997 - 2014 6.19

HCV1b 34 1990 - 2015 37.08

HCV3a 35 2002 - 2014 5.11

Discussion

In this study, we performed the most comprehensive screening for hepaciviruses in African

small mammals with a strong focus on rodents. We detect hepaciviruses in 29 animal species

that had not been screened and found to carry hepaciviruses before, and therefore, considerably

expand the RHV host spectrum. In line with previous research (Drexler et al., 2013; Kapoor et al.,

2013; Van Nguyen et al., 2018), we demonstrate that rodents constitute an important source of

hepaciviruses and that the evolutionary history of those pathogens has been largely shaped by host

switching events. Finally, we identify a high rate of hepacivirus co-infections among Lophuromys

rodents and conduct evolutionary analyses within specific host lineages.

While bats have received much attention as important pathogen reservoirs of infectious dis-

eases, equally large-scale surveillance efforts have focused on rodents and, to a lesser extent, other

small mammals. Rodents are generally considered as major transmitters of zoonoses carrying
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more than 66 pathogens that have crossed species barriers and infected humans (Han et al., 2015;

Woolhouse and Gaunt, 2007). The number of virus lineages carried by vertebrate orders appears

correlated mainly with the number of species present in these orders (Mollentze and Streicker,

2020). Therefore, species rich orders such as bats and rodents can be expected to host a higher

number of viruses with zoonotic potential (Mollentze and Streicker, 2020). Identifying which

animal was the source of hepaciviruses transmission to humans is of utmost importance, since

this information can be used to unravel the mechanisms of HCV epidemic emergence and spread

(Hartlage et al., 2016; Pybus and Thézé, 2016) as well as to assess whether we are still at risk of

other emergence events.

In our sampling, 1.86% was positive for HCV homologues, a prevalence consistent with previ-

ous rodent screening efforts performed by Drexler et al. (2013). That study detected hepaciviruses

in 1.8% of the Myodes glareolus population tested and a prevalence of 1.9% in Rhabdomys pumilio

species. Although we detected three localities with a considerably higher prevalence of RHVs,

these location-specific hotspots could also be correlated with variation in sample preservation, as

they reflect distinct sampling sessions and therefore distinct ways in which the samples were pre-

served. Our 56 novel genomes represent new virus lineages and complement earlier efforts to

uncover the diversity of RHVs. (Drexler et al., 2013; Kapoor et al., 2013; Van Nguyen et al.,

2018; Wu et al., 2018).

A hepacivirus nomenclature has been proposed that consists of 14 species: Hepacivirus A - N

(Smith et al., 2016); a classification made based on the amino acid divergence in distinct parts of

the hepacivirus polyprotein. As more information accumulates on the genetic diversity of those

pathogens, it becomes extremely challenging to define specific criteria for their classification (Sim-

monds et al., 2017). The current demarcation criteria do not adequately accommodate the high

genetic diversity of hepaciviruses because they lead to discrepancies in the number of assigned

species, as is demonstrated in our analysis (Supplementary Figure 4). This calls into question

the current demarcation criteria and leaves hepacivirus classification as an open issue for further

discussion.

To date, hepacivirus homologues in horses (EHV) and dogs (CHV) remain the closest relatives

of HCV. Nevertheless, there is substantial genetic divergence between the equine/canine lineage

and HCV, which casts considerable doubt on the hypothesis that Hepatitis C virus may jumped

directly from horses to humans (Pybus and Thézé, 2016; Scheel et al., 2015). As Pybus and Gray

(2013) and Hartlage et al. (2016) argue, there are currently two plausible scenarios for the origin
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of HCV. On the one hand, one can speculate that a single spillover event from a zoonotic reser-

voir established the infection in the human population. This ancestral HCV virus subsequently

evolved and diversified in humans, resulting in the current genomic variability among genotypes.

This is in agreement with a monophyletic HCV cluster, but it seems implausible that this resulted

from the introduction of an ancestral EHV/CHV virus because of its substantial genetic diver-

gence as a sister lineage and its relatively shallow diversity. On the other hand, it is conceivable

that hepaciviruses have jumped to humans on multiple independent occasions and subsequently

gave rise to the highly diverse HCV genotypes. Although there is currently no data to support this

hypothesis, this may be attributed to sparse sampling of potential hosts (e.g. additional primate

species or lagomorphs) and geographic gaps in surveillance. Based on the currently available sam-

pling, primates, rodents and bats accommodate the highest hepacivirus genetic diversity among the

mammalian hosts. Therefore, it is plausible that they represented an ancestral zoonotic source for

transmission to other mammals (including humans) independently, of whether they crossed the

species barrier once or multiple times (Moreira-Soto et al., 2020). While it is possible that viral

lineages more closely related to HCV have gone extinct in their specific hosts, primates, rodents

and bats deserve further attention as potential reservoirs. Surveillance in other hosts is also critical

for mapping the broad host range of these viruses and to study their ecology and evolution.

Despite many host switches, there is still some non-random clustering of hepaciviruses based

on rodent taxon. All Lophuromys hepacivirus clades form monophyletic groups exclusive to Lo-

phuromys species, despite the fact that they have been sampled thousands of kilometers away.

Furthermore, hepaciviruses sampled from other rodent taxa much closer geographically to some

of these brush furred rat samples belong to different hepaci-lineages. This strongly supports that

the hepacivirus evolutionary history has, at least to some extent, been driven by confinement to

specific rodent taxa. These observations fit with an ancient evolutionary history constrained by

the genetic background of the hosts. Furthermore, it is clear that early on in the evolution several

lineages wound up in the same rodent taxa and have evolved in parallel with other hepacivirus

lineages in the same rodent taxa.

Characterizing hepaciviruses in rodents may also prove relevant for HCV vaccine research.

While treatment with direct-acting antiviral compounds has considerably advanced the past few

years, a prophylactic vaccine is still lacking due to the absence of an in vivo model to study virus-

host interactions within the liver. This has been an active field of research that made considerable

progress in the development of surrogate rat models of chronic HCV infection (Billerbeck et al.,
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2017; Hartlage et al., 2019). Our work may motivate further biological characterization of RHVs,

and the evidence of hepacivirus co-infections in specific rodents may have immunological impli-

cations to consider.

Remarkably, we only observed co-infections in a particular genus of the Muridae family, the

brush furred rats, even though various genera from the same family have been found to carry

hepaciviruses. To date, relatively little is known about the behavioural ecology of the four Lo-

phuromys species that harboured co-infections. These four rodent species are phylogenetically

closely related (they belong to the so-called L. flavopunctatus complex) (Verheyen et al., 2002,

2007) and they diverged in Pleistocene in different forest fragments (Komarova et al., submitted).

Most of the species from this complex are endemic in relatively humid habitats of central and east

Africa (Sabuni et al., 2018; Van de Perre et al., 2019a). Although Lophuromys tend to be solitary

and show antagonist behavior to conspecifics, they can sometimes live in very high population

densities. In captivity they may fight until death (Kingdon et al., 2013) and if such conflicts occur

in natural circumstances, it may represent a mode of transmission that could help to explain the

elevated RHV detection and co-infection rate. Furthermore, these rodents can be occasionally in-

fested with blood-sucking fleas depending on the location and the specific flea index. Flea sharing

between sympatric species of rodents has been previously described (Laudisoit et al., 2009) and

could possibly support a scenario of RHV mechanical transmission.

Interestingly, a co-infection of two divergent paramyxovirus lineages was also found in a Lo-

phuromys specimen, and in no other paramyxovirus host (Vanmechelen et al., 2018). Whether the

apparent propensity of brush furred rats to be co-infected with multiple lineages of the same virus

family is due to a common physiological background of the closely related species that enhances

their susceptibility or tolerance of multiple hepacivirus/paramyxovirus infections, or because of

behavioral characteristics that increases the transmission probabilities, is still unknown. Further

research is needed into the heterogeneous viral detection and co-infection rate in rodents and how

those are shaped by specific transmission dynamics.

Prior to this study, hepacivirus co-infections have to our knowledge only been identified for

HCV in humans (Blackard and Sherman, 2007; Morel et al., 2010). While preliminary, the fact that

only one RHV strain from the rodent I cluster co-circulates with multiple strains from the rodent III

lineage appears to support a pattern of dominance of rodent I viruses over the rodent III variants.

Whether this dominant strain hypothesis denotes any significant mode of infection needs further

biological testing, ideally using an experimental mouse model. This may help to define critical
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elements of hepacivirus persistence, especially in the presence of multiple RHV co-circulating

strains. Knowledge of the frequent establishment of co-infections within the Lophuromys mice

may open new experimental horizons and offer more insights into the pathogenesis and immunity

against hepaciviruses.

Although the blood-borne transmission route is well documented for HCV, other potential

modes of infection for hepaciviruses are poorly characterized. Recently, divergent hepaciviruses

were also discovered in two non-vertebrate hosts including a Culex annulirostris mosquito

(Williams et al., 2020) and an Ixodes holocyclus tick species (Harvey et al., 2019). Phyloge-

netic analysis has grouped the mosquito hepacivirus with viruses present in birds (Williams et al.,

2020), while the tick hepacivirus clusters within the rodent I lineage (Harvey et al., 2019). Both

analyses, however, provided strong evidence that those invertebrate hosts were feeding on a bird

species and a long-nose bandicoot, respectively. Whether mosquitoes or ticks act as intermediate

hosts or vectors of hepacivirus transmission is currently speculative and additional surveillance is

required to verify this infection route.

As part of our evolutionary analyses, we focused on recombination as an important driver of

genetic diversity. Recombination is relatively uncommon in the extensively studied HCV popula-

tion (González-Candelas et al., 2011; Karchava et al., 2015; Raghwani et al., 2012; Susser et al.,

2017) and while some evidence for interspecific hepacivirus recombination has been found (Thézé

et al., 2015), the authors indicated that a clear interpretation of this result is hampered by high ge-

netic divergence and undersampling. We focused on recombination within specific host lineages

and detected significant signal in the bovine, equine and two rodent lineages. This implies that

co-infections, for which we found evidence in specific rodent hosts, also occur in other animal

hosts.

Using selection analyses that account for recombination, we estimate an overall negative selec-

tion pressure on the virus population in each host providing evidence for a process of evolution un-

der predominantly purifying selection. However, this does not exclude the possibility of episodic

molecular adaptation in the evolutionary history of these viruses for example following a cross-

species transmission to a new host. Unfortunately, the extensive interspecific genetic divergence

hampers uncovering such events in codon sequences. We consistently identify a similar fraction of

positively selected sites in three HCV genotype data sets, in particular in the E1/E2 region, while

such sites are rare or absent in hepaciviruses in animal hosts. It is therefore interesting to specu-

late that differences in immune responses may, together with differences in transmission intensity,
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underly some variability in hepacivirus co-infections and hence also differences in recombination

rates.

Although the hepacivirus discovery phase is still ongoing, the tremendous advances in ge-

nomics technologies allow us to start characterizing the evolutionary dynamics of these viruses

beyond what is known from HCV research. For rapidly evolving RNA viruses, evolutionary rates

can be estimated based on the sequence divergence that accumulates between genome samples

obtained at different time points. We demonstrate that the current sampling time range is insuf-

ficient for calibrating a hepacivirus molecular clock in the different animal hosts. This calls for

further characterization of hepacivirus genomes, both from old samples as well as from more re-

cent samples, in order to capture sufficient temporal signal. This will provide the ability to estimate

divergence times in the hepacivirus evolutionary history as well as to study the biological factors

underlying evolutionary rate variation.

In conclusion, we show that viral genomic studies provide important information about the di-

versity, transmission history within and among different hosts, and evolutionary dynamics of hep-

aciviruses. We hope that screening efforts guided by ecologists will not only target wild animals

but also commensal species that live in close proximity to residential areas. Characterizing possi-

ble routes of transmission among those hosts and/or between different hosts may prove particularly

interesting as it may provide insights into the ecological barriers for viruses at the rodent-human

interface. Hopefully, the expanding hepacivirus diversity will motivate further biological studies

aimed at elucidating hepacivirus transmission routes and modes of infection.
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