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A B S T R A C T

Satellite remote sensing of Land and Water Surface Temperature (L/WST) has many applications in studies of
terrestrial and aquatic ecology. Retrieval of L/WST requires a well calibrated radiometer and an accurate at-
mospheric correction. In the present study, the performance of the Thermal InfraRed Sensor (TIRS) on board
Landsat 8 is evaluated for the retrieval of L/WST. libRadtran is used to retrieve atmospheric correction para-
meters based on atmospheric profiles of relative humidity and temperature from three global atmospheric
models. Performance of single band retrievals is compared to typical MODTRAN results from the Atmospheric
Correction Parameter Calculator (ACPC) and a split-window approach. A multi-temporal land masking method
using imagery from the Operational Land Imager (OLI) on board Landsat 8 is demonstrated, and is used to
automatically classify imagery in the matchup dataset in three classes of cloud cover. Two sources of in situ data
covering the Belgian Coastal Zone (BCZ) are used for validation of the L/WST product: (1) fixed locations in the
Flemish Banks measurement network and (2) underway data from regular RV Belgica campaigns. In the present
study the single band methods outperformed the split-window approach, and consistent retrievals are found for
the MODTRAN and libRadtran simulations. Typical single band surface temperature retrievals in quasi cloud-
free conditions have Root Mean Squared Differences (RMSD) of 0.7 K and 1 K for Bands 10 and 11 with low bias,
depending on the method and atmospheric profile source. For imagery with scattered clouds, RMSD values
increase to 1 K and 2 K respectively with an approximately 0.5 K cold bias, likely caused by cloud proximity. The
calibration efforts combined into Collection 1 allows for accurate absolute surface temperature retrievals from
B10 on Landsat 8/TIRS for homogeneous targets with known emissivity, such as liquid water. The method is
adapted to global processing and can be used for Land Surface Temperature retrieval with a suitable source of
emissivity data.

1. Introduction

Land and Water Surface Temperature (L/WST) are essential vari-
ables for understanding the earth's climate and surface temperature is
an important driver in ecology, biodiversity, and species distribution
(Burrows et al., 2011; Doney et al., 2012; Cheung et al., 2009; Yang
et al., 2013; Pachauri et al., 2014; Neukermans et al., 2018). LST re-
trieval is essential for understanding the evapotranspiration budget and
management of freshwater sources (Anderson et al., 2012), and can be
used to study water use change in agricultural areas (Anderson et al.,
2018). WST in the dynamic near-shore coastal zone drives biogeo-
chemical processes and its monitoring is essential, but difficult using
traditional methods (Brewin et al., 2017, 2018). WST can be linked to
water stratification and the occurrence of cyanobacterial blooms, and a
positive relationship between WST and cyanobacterial growth rate can
be found (Paerl, 2014). Buoyant cyanobacterial colonies may even
enhance WST leading to a positive feedback mechanism (Paerl and
Paul, 2012). Often satellite data with kilometre scale resolution (e.g.

from MODIS and AVHRR) is used for WST retrieval, which may perform
poorly at the land-water border due to mixed pixels and land influence
(Smit et al., 2013; Brewin et al., 2018). WST was derived from higher
resolution Landsat 5 and 7 records for US reservoirs and estuaries in
order to improve harmful algal bloom forecasting capabilities
(Schaeffer et al., 2018). To complement the high performance of the
Operational Land Imager (OLI) on Landsat 8 over waters (Vanhellemont
and Ruddick, 2014; Franz et al., 2015), several researchers combined
OLI derived water colour data with Thermal InfraRed Sensor (TIRS)
derived WST for river plume (Manzo et al., 2018; Brando et al., 2015),
coastal and estuarine (Trinh et al., 2017; Snyder et al., 2017) studies.
Landsat derived WST was used for monitoring bathing waters (Cherif
et al., 2019), and high resolution thermal satellite imagery has been
used to validate hydrodynamical models, e.g. for modelling thermal
effluent from power plants (Salgueiro et al., 2015). There clearly is an
interest in operational use of Landsat data for WST monitoring in
coastal and inland waters, and the TIRS on Landsat 8, is an ideal can-
didate for such a high resolution WST product. One of the candidate
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missions in the European Commission's Copernicus programme is the
Land Surface Temperature Monitoring (LSTM) mission which will carry
a high resolution multi-band thermal sensor to provide land and water
surface temperatures. Water targets are often used for calibration and
validation of LST products (Barsi et al., 2005; Cook et al., 2014;
Malakar et al., 2018), due to the known spectral emissivity and the
generally homogeneous temperature of water bodies within a Landsat
pixel. Landsat 8 derived L/WST products are generally not yet readily
available for study sites worldwide, e.g. as a result of the use of loca-
lised ancillary datasets of atmospheric profiles or the lack of freely
available software, and few studies compare the performance of dif-
ferent methods. Recently, the United States Geological Survey (USGS),
which operates Landsat and distributes its data, announced that a
standard LST product based on the work of Cook et al. (2014) will be
distributed starting with Collection 2, at the earliest in late 2019.

TIRS was designed with two thermal infrared channels, B10
(10.6–11.2μm) and B11 (11.5–12.5μm), with the aim of using a split
window algorithm (Caselles et al., 1998) for atmospheric correction of
the imagery (Irons et al., 2012). Initial vicarious calibration results
showed the TIRS channels to be too warm by several K in both channels
(Barsi et al., 2014; Montanaro et al., 2014b), and significant stray light
issues were found that limited the performance of split-window ap-
proaches (Montanaro et al., 2014a). USGS/Earth Explorer re-
commended not to use split-window algorithms in absence of a full
stray light correction. After the development of a stray light correction
scheme by Gerace and Montanaro (2017), the split window approach of
Du et al. (2015) reportedly reached high fidelity comparable to that of
MODIS. This stray light correction is now integrated in the Landsat
Collection 1 dataset that is widely distributed by USGS. In the mean-
time, several single band algorithms have been developed (Cook et al.,
2014; Wang et al., 2015), both in order to minimize impacts of the stray
light effect and for transferability to older Landsat sensors with only a
single thermal channel. Cook et al. (2014) used modelled atmospheric
profiles of relative humidity and temperature, and found B10 and B11
LST being respectively 0.5 K and 2 K too warm compared to buoy
temperatures. Wang et al. (2015) established an algorithm using surface
measured temperature and columnar water vapour to estimate atmo-
spheric temperature and transmittance, and found a B10 derived LST
RMSD of 0.8 K compared to modelled results. It should be noted that
these results were based on older processing and calibration versions. In
most studies of LST retrieval and calibration of thermal bands (Schott
et al., 2012; Cook et al., 2014), the radiative transfer modelling is
performed using the MODerate resolution atmospheric TRANsmission
program (MODTRAN) developed by Spectral Sciences, Inc. and the US
Air Force (Berk et al., 1999). MODTRAN is not free or open source
which may inhibit wider use and further development of LST products.

The present paper evaluates single band LST retrievals from both
bands 10 and 11 in the L8/TIRS Collection 1 Level 1 data. The free and
open source libRadtran (Mayer and Kylling, 2005; Emde et al., 2016)
radiative transfer code is used for retrieval of atmospheric correction

parameters, together with atmospheric profiles from three different
gridded atmospheric model datasets, similar to the work of Cook et al.
(2014) and Barsi et al. (2003). Atmospheric correction performance for
these single band libRadtran runs is compared to two other algorithms:
(1) the commonly used Atmospheric Correction Parameter Calculator
(Barsi et al., 2003, 2005), and (2) the split-window algorithm by Wan
(2014) as calibrated by Du et al. (2015). Multi-temporal land masking is
developed for improved automated cloud-filtering of matchups, and L/
WST retrievals are compared to in situ temperature measurements from
the Flemish Banks measurement network and underway data from
Research Vessel Belgica collected in the Belgian Coastal Zone (BCZ).

2. Data and methods

2.1. In situ data

In situ measurements of water temperature were obtained from 19
measurement sites in the Flemish Banks Coastal Monitoring network
operated by the Agency for Maritime Services and Coast of the Flemish
Government (https://meetnetvlaamsebanken.be/). The locations of
these sites in the Belgian Coastal Zone (BCZ) are provided in Fig. 1. 15
sites are buoy deployments using Datawell Directional Waveriders, and
4 are measuring piles with an Aanderaa CT4120AIW sensor. Tem-
perature is measured in the surface waters every 30 min with reported
0.2 °C measurement accuracy for the buoys and 0.1 °C for the piles (see
manufacturer documentation for details). Underway measurements
were also obtained from the Onboard Data Acquisition System (ODAS)
on Research Vessel Belgica (https://odnature.naturalsciences.be/
belgica/en/odas). ODAS temperature is measured with a Sea-Bird Sci-
entific SBE-38 Digital Oceanographic Thermometer with initial accu-
racy of 0.001 °C in lab conditions. Temperature is measured close to the
water inlet located on the bow 3 m below the waterline. Underway data
is provided every 10 min, which corresponds to an approximately 3 km
spacing between measurements for typical cruising speeds. ODAS data
was screened for quality flagged geolocation or temperature data. In
situ data with unrealistic temperatures for the BCZ were filtered out, i.e.
by removing T≤0° and T>25°.

Due to radiative cooling of the water surface skin, the skin tem-
perature measured by satellite is generally a few tenths of a degree
cooler than the temperature measured at depth (Donlon et al., 1999,
2002), and the measured temperature needs to be adjusted to skin
temperature for validation purposes. At high wind speeds generally a
constant correction factor can be used (Alappattu et al., 2017; Donlon
et al., 2002) to adjust bulk to skin temperature. Winds in the BCZ are
generally> 5 m/s (Ruddick and Lacroix, 2006; Baeye et al., 2011),
which is confirmed here using wind speed measured at 10 m above the
surface for three measurement sites. In the period 07/2012–07/2019,
winds at MP0, MP4, and MP7 (see Fig. 1) were>4 m/s respectively
83%, 81%, and 86% of the time, and hence in situ measured bulk
temperature was directly adjusted to skin temperature by a constant

Fig. 1. s RGB composite of a Landsat 8 image (2017-04-09) covering the Flemish Banks (left) and B10 derived Sea Surface Temperature (right). Circles (buoys) and
triangles (piles) represent the locations of the in situ measurements. Non-water pixels are masked in white.
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offset of −0.17 K (Donlon et al., 2002) The tidal waters of the BCZ are
well mixed and rarely stratified (Ruddick and Lacroix, 2006), the buoy
measured temperature is the equilibrium temperature of the submerged
bottom part of the buoy hull, and the water pumped through the ship's
underway system is considered to be well mixed. Using>4000 CTD
casts collected by the Flemish Marine Institute (VLIZ) in the BCZ be-
tween 2001 and 2019 (available at http://www.vliz.be/vmdcdata/
midas/), temperature variability in the upper 3 m was found to be
low, with 95/90/50 percentiles of< 0.06 K/<0.03 K/< 0.01 K, and
hence there is no thermal gradient to the measurement depth (Cook
et al., 2014; Zeng et al., 1999) that needs to be corrected. Diurnal
temperature variability in the BCZ is also low; the interquartile range
from the 24 h moving standard deviation in the Flemish Banks mea-
surements was 0.1°C–0.2 °C, i.e. within the reported measurement ac-
curacy. A variable bulk to skin correction, e.g. Alappattu et al. (2017),
is in general considered not required for the present matchup exercise
in the BCZ. In situ measurements from the Flemish Banks were linearly
interpolated to the satellite overpass time when bounding measure-
ments within +- 15 min were available. Sample time-series for two
buoy locations (Raversijde and Bol Van Heist) with interpolated
matchups are given in Fig. 2. Underway measurements were used as is,
tracking the time difference between the underway measurement and
satellite overpass. Matchups were limited to a common coverage of the
used atmospheric profile datasets (see further), which was mainly
limited by the ERA5 reanalysis dataset to imagery before 2019-01-31.
Linear correlation statistics and Reduced Major Regression (RMA) lines
were computed for the matchups, and the Root Mean Squared Differ-
ence (RMSD), Mean Difference (MD), and unbiased RMSD (unb-RMSD)
are given as indication of the total error, systematic error (bias), and
precision:
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2.2. Satellite data

Collection 1 imagery from the Operational Land Imager (OLI) and
Thermal InfraRed Sensor (TIRS) on board Landsat 8 were obtained from
Google Earth Engine (GEE, Gorelick et al. (2017)). GEE distributes the
standard Level 1T (terrain corrected) Top-of-Atmosphere (TOA) images

in GeoTiFF format as produced by USGS from the Landsat Product
Generation System (LPGS) from version 2.7.0 (imagery before October
2017), 13.0.0 (October 2017–April 2018), and 13.1.0 (imagery after
April 2018). OLI is a push broom imager with 9 spectral bands (B1-9) in
the visible to near-infrared part of the spectrum, with 8 bands at 30 m
and 1 panchromatic band at 15 m spatial resolution. OLI data was used
for quality control of the imagery - mainly for cloud and object
screening (see further). TIRS is a two band push broom imager with
bands B10 and B11 centred on 10.9 (10.6–11.2) and 12.0
(11.5–12.5) μm, and records data at 100 m spatial resolution. TIRS data
is resampled to 30 m and collocated on the OLI grid. In total 280 images
were processed for an approximately 42 by 66 km subset
(51.20–51.58°N, 2.42–3.37°E) covering the Flemish Banks in the period
from end of March 2013 to the end of June 2019, from the two WRS-2
path/row tile sets covering the BCZ: 199/024 (139 tiles) and 200/024
(141 tiles). For six relatively clear images with matchup underway data
a slightly larger region of interest was processed, covering nearly the
full BCZ (51.13–51.76°N, 2.27–3.37°E). Nighttime L8 imagery was
available for a limited period (22 scenes in path/row 056/220 between
September 2016 and August 2017), but was excluded from the present
study due to the lack of OLI data for automated quality assessment.

2.3. Surface temperature retrieval

Top-of-Atmosphere (TOA) radiance (Lt) is a measurement of the
combined surface-emitted radiance (Ls) and atmospheric up- (Lu) and
downwelling (Ld) radiances transmitted through the atmosphere (τ):

= + +L L L L( (1 ) ) ,t s d u (4)

with ε the target emissivity, and 1-ε the target albedo. To convert Lt , or
equivalent at-sensor Brightness Temperature (BT), to surface tempera-
ture, the atmospheric effects need to be corrected, for which the Lu, Ld,
τ, and ε need to be estimated. Lu and τ can be determined from radiative
transfer simulations for ε = 1 at two different surface temperatures Ls1
and Ls2 as the offset and slope of a linear fit of the surface and TOA
signals:

= L L
L L
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2 1
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With the knowledge of Lu and τ, Ld can then be computed from a si-
mulation with ε < 1 and Ls = 0:

=L
1d

L Lt u

(7)

Fig. 2. Timeseries of in situ and TIRS surface temperatures for RAV and BVH. Yellow dots are in situ data interpolated to the overpass time. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web version of this article.)
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Ls can then be estimated from Eq. (4), and the surface temperature in K
retrieved from Ls:

=
+( )T K

ln
2

1K
Ls

1
(8)

with K1 and K2 included in the Landsat metadata file, here reproduced
in Table 1. The distilled water emissivity spectrum from the MODIS
(Moderate Resolution Imaging Spectrometer) UCSB Emissivity Library
was resampled to the TIRS spectral bands to retrieve ε of water in Bands
10 and 11 (Table 1).

The libRadtran (version 2.0.2) radiative transfer code (Mayer and
Kylling, 2005) was used to perform these three simulations and derive
hyperspectral values of τ, Lu, and Ld which were then resampled to the
relative spectral response of B10 and B11 on Landsat-8/TIRS. These
parameters and the surface emitted radiance depend on the observation
zenith angle (Cao et al., 2019), which is here simplified to θ = 0° for
the largely nadir viewing Landsat. Three sources of atmospheric profiles
of temperature and relative humidity were used: (1) 6 hourly 1 × 1
degree data from the Global Data Assimilation System (GDAS, https://
www.emc.ncep.noaa.gov/gmb/gdas/), and (2) 6 hourly 1 × 1 degree
data from the Climate Forecast System version 2 (CFSv2, Saha et al.
(2014)), both from the National Centers for Environmental Prediction
(NCEP), and (3) hourly 0.25 × 0.25° ERA5 Reanalysis Data from the
European Centre for Medium-Range Weather Forecasts (ECMWF,
Malardel et al. (2016)). The atmospheric profiles from the grid cells
bounding the region of interest in space and the overpass in time were
extracted and interpolated to form a single profile per image. This
profile was then input into libRadtran to retrieve the required para-
meters. Due to the global nature of the datasets, this method could be
extended to any scene globally, and for full scene processing the use of a
spatially resolved atmosphere is recommended (Appendix A). τ, Lu, and
Ld were also obtained for B10 using the ‘Atmospheric Correction
Parameter Calculator’ (https://atmcorr.gsfc.nasa.gov/) which uses
NCEP/GDAS profiles and the MODTRAN radiative transfer model (Barsi
et al., 2003, 2005). Additionally, the split-window algorithm of Wan
(2014) was used:
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with BT10 and BT11 the at-sensor Brightness Temperatures, computed by
substituting Ls by Lt in Eq. (8). and are the difference and average
emissivity in Bands 10 and 11 (taken from Table 1), and the b coeffi-
cients derived from simulations by Du et al. (2015) based on ranges of
Columnar Water Vapour (CWV, in cm). Here two sets of coefficients are
compared: (1) using the entire CWV range (0–6.3 cm) and (2) selecting
the appropriate coefficient based on the CWV provided with the NCEP/
GDAS profiles. An overview of the compared set ups is given in Table 2.

2.4. Image quality control

With the aim of image quality control, surface reflectances ( s) were
computed from the Operational Land Imager (OLI) using the Dark
Spectrum Fitting (DSF) algorithm (Vanhellemont, 2019). Pixels were
identified as non-water when s 1609 nm > 0.05 or t 1373 nm >
0.01, and a dilation operation with 10 iterations was performed to get a

final non-water mask. Contamination by small clouds and objects (ships
and offshore constructions) was filtered out by applying a threshold of
0.01 on the standard deviation of s 560 nm in a 11 × 11 pixel box
around the matchup location. These quality control steps will filter out
thick clouds covering or close to the matchup station, but do not take
into account cloud proximity and the presence of thin clouds, which
may also negatively impact the matchup performance. A multi-tem-
poral land masking method was developed to retrieve cloud fraction
over water pixels for additional quality control of the matchups. For
each image, a mask was computed based on s 1609 nm > 0.05, and
the number of masked pixels was recorded. The images were sorted
according to the fraction of masked pixels, from low to high (Fig. 3).
Land pixels are expected to be masked on most of these masks (ex-
cluding cloud shadows, intertidal and flooded areas, and scene edges),
and a suitable threshold on image count needs to be determined to
establish a land mask. A scaled logistic function of sorted image index
(x) and number of masked pixels (y) can be fitted:

= +
+ +y c d c

e1 a b x( ) (10)

where a and b are the logistic growth rate and mid-point, and the
asymptotic values c and d represent the number of masked pixels in
cloud-free and fully cloudy conditions. The discrete difference (as %
coverage) between the number of masked pixels was computed for the
sorted image list. The sorted image index larger than the inflection
point of the logistic function giving the longest stretch of discrete dif-
ferences less than 0.5% of image pixels was selected as threshold. With
the current dataset, this method gives image counts of 96 and 93 for
path/row 199/024 and 200/024 respectively, i.e. pixels that are not
water on at least that many images are classified as land. This method is
generally applicable to coastal regions where the areas with low SWIR
reflectance are water, i.e. most coastal regions. It may not perform
optimally in the presence of ice, and has not been tested in extremely
cloudy regions. At lower latitudes the SWIR reflectance may be con-
taminated by sun glint, and an appropriate sun glint correction may
need to be applied to the s.

3. Results and discussion

3.1. Land masking

The automated multi-temporal land masking generates a sensible
land mask in a sensor-specific configuration, even in the presence of
cloud shadows and intertidal zones, that generally complicate water/
non-water masking. At the edge of the satellite swath, some issues were
encountered due to the variable extent of the swath in geographic co-
ordinates. In the present dataset, the 200/024 path/row combination
has the edge of swath just east of Zeebrugge and hence variable cov-
erage of the region by individual images. This effect causes the slight
inclination in the minimum and maximum factional coverage and
slightly noisier discrete difference in the sorted image list (right hand
site plots in Fig. 3). The land mask generation could be restricted to
pixels with coverage in every scene, excluding a small part of the region
covered by the variable swath extent. In the present situation, the mask
generated from the 199/024 path/row combination, which always fully
covers the study area, could however be used for both tilesets. This land
mask allows for an estimation of cloudiness of the water area in the
scene, which is essential for quality control of matchups. Images were
sorted in three categories: (1) clear images, with< 5% of the water
masked, (2) images with scattered clouds, 5–50% of the water masked
and (3) cloudy images, with> 50% masked. Images from class (3) were
automatically rejected from the validation exercise.

3.2. Surface temperature

Matchups of WST with the Flemish Bank measurements are given in

Table 1
Landsat 8/TIRS bands and used constants.

Band Wavelength Bandwidth water K1 K2

(µm) (µm) (Wm sr µm2 1 ) (K)
B10 10.9 10.6–11.2 0.9926 774.8853 1321.0789
B11 12.0 11.5–12.5 0.9877 480.8883 1201.1442
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Tables 3 and 4, respectively for the clear images (329 matchups for 15/
19 sites) and the images with scattered clouds (294 matchups for 16/19
sites). Scatter plots for the clear image matchups are shown in Fig. 4 for
the libRadtran runs and Fig. 5 for the ACPC and Split-Window ap-
proaches. Overall, the single band methods perform similarly, giving

very good linear correlation statistics with near-unity slope and a low
offset (< 0.2 K for B10). For the libRadtran results, the Root Mean
Squared Difference (RMSD) are 0.64 K–0.88 K and the Mean Difference
(MD) of 0.01 K–0.28 K for B10. Unbiased RMSD results are comparable
to the RMSD due to the low MD. For B11 the differences are higher,

Table 2
Overview of the different set-ups used in the present paper. For the Single Channel runs, atmospheric correction parameters τ, Lu, and Ld are retrieved based on
atmospheric profiles from the given dataset. For the Split-Window (SW) technique the coefficients from Du et al. (2015) over the whole range of CWV is used (SW–F)
or selected according to NCEP/GDAS CWV (SW–S).

Set up Algorithm Atmospheric Profile Time step Grid Levels RT Model

ACPC Single Channel NCEP/GDAS 6 hourly 1° 27 MODTRAN
GDAS Single Channel NCEP/GDAS 6 hourly 1° 27 LibRadtran
ERA5 Single Channel ECMWF/ERA5 hourly 0.25° 37 LibRadtran
CFSv2 Single Channel NCEP/CFSv2 6 hourly 1° 37 LibRadtran
SW-F Split-Window – – – – MODTRAN
SW-S Split-Window NCEP/GDAS for CWV – – – MODTRAN

Fig. 3. Images for the Flemish Banks sorted by number of masked pixels ( s 1609 nm > 0.05): fraction of masked data (top) and discrete difference between sorted
images (bottom). WRS-2 path/tile combinations 199/024 (left) and 200/024 (right). The top plots show a scaled logistic fit with inflection point in orange. The lower
plots show the 0.5% difference in red with selected sorted image index in red. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)

Table 3
Results of the matchups with Flemish Banks data for the clear images (< 5% masked water pixels). n is the number of matchups, m and b the slope and offset of the
Reduced Major Axis regression, r2 is the square of Pearsons linear correlation coeffient. RMSD and MD are the Root Mean Squared and Mean Differences between
satellite and in situ measurements (satellite - in situ), with unb-RMSD the unbiased RMSD.

Set up Band n m b (°C) r2 RMSD (°C) MD (°C) unb-RMSD (°C)

GDAS 10 329 1.014 −0.179 0.985 0.640 0.014 0.640
ERA5 10 329 1.013 −0.125 0.983 0.695 0.048 0.693
CFSv2 10 329 1.018 0.033 0.976 0.876 0.282 0.830
GDAS 11 329 1.044 −0.309 0.973 0.953 0.297 0.905
ERA5 11 329 1.037 −0.192 0.968 1.026 0.322 0.974
CFSv2 11 329 1.048 0.121 0.945 1.501 0.782 1.281
ACPC 10 329 0.995 −0.123 0.984 0.678 −0.189 0.651
SW-F 10 + 11 329 1.033 1.173 0.985 1.753 1.622 0.664
SW-S 10 + 11 329 1.020 1.260 0.980 1.702 1.530 0.745

Table 4
Same as Table 3 but for the images with scattered clouds (5–50% masked water pixels).

Dataset Band n m b (°C) r2 RMSD (°C) MD (°C) unb-RMSD (°C)

GDAS 10 294 1.004 −0.566 0.966 0.925 −0.515 0.768
ERA5 10 294 1.010 −0.681 0.969 0.911 −0.540 0.733
CFSv2 10 294 1.078 −1.313 0.924 1.251 −0.191 1.236
GDAS 11 294 1.020 −0.704 0.943 1.095 −0.424 1.010
ERA5 11 294 1.028 −0.883 0.950 1.067 −0.482 0.953
CFSv2 11 294 1.183 −2.462 0.832 2.040 0.165 2.033
ACPC 10 294 0.977 −0.357 0.963 1.050 −0.681 0.799
SW-F 10 + 11 294 1.055 0.639 0.950 1.737 1.432 0.984
SW-S 10 + 11 294 1.069 0.432 0.948 1.742 1.413 1.019
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with RMSD ranges of 0.95 K–1.50 K and MD of 0.30 K–0.78 K. ACPC
performs very well also, and is on average the only method giving lower
temperatures (MD -0.19 K) by Landsat. For the dataset presented here,
neither of the Split Window approaches give as good results as the
single channel approaches, with RMSD>1.7 K and MD > 1.5 K. The
SW approaches have unbiased RMSD results similar to the single band
(B10) retrievals, indicating a similar level of precision, but a large
systematic bias, likely due to the calibration of the algorithm. The un-
biased RMSD is however slightly higher for SW than for the B10 ap-
proaches, perhaps due to the inclusion of B11 in the SW algorithm. The
overall best performance was found for the B10 libRadtran runs and
NCEP/GDAS and ERA5 reanalysis profiles with a MD of 0.01 K and
0.05 K. For the images with scattered clouds (Table 4) errors are no-
ticeably larger, with about double the RMSD and a MD up to −0.5 K.
This cold bias indicates impact of cloud proximity and contamination of
undetected (thin) clouds. However, for certain applications these errors
can be considered acceptable. By combining the 329 matchups from the
clear and the 294 matchups from the scattered clouds datasets, RMSD
and MD are about 0.8 K and −0.3 K respectively for the libRadtran
results (not shown). Performance for the near-shore (< 1 km) stations

RAV, ONS, OST, OOS, MP2 and ZHG (Fig. 1) was not found to be dif-
ferent from the more offshore stations.

3.3. Spatial consistency

For the underway data similar results are found, with the matchups
from the libRadtran ERA5 dataset shown in Fig. 6 and Table 5, giving
an RMSD of 0.6 K and a MD of −0.04 to 0.03 depending on time dif-
ference with the satellite overpass. Despite the largest time window
including nearly a full tidal cycle which can modify the thermal dis-
tribution of the water mass, and heating of the top layer by the sun,
errors are of the same magnitude as using the buoy matchups. The
spatial patterns observed by Landsat correspond well to the in situ
variability measured by ship (Figs. 7 and 8). Increase of the matchup
time window does increase the RMSD and the offset of the regression
line, and in general moves points away from the 1:1 line (Fig. 6), likely
due to tidal displacement of water masses and heating/cooling of the
surface.

Fig. 4. Matchups for the retrievals using the libRadtran model and three atmospheric profile sources for images with<5% masked water pixels. Top and bottom
rows show the B10 and B11 results. The red lines are the Reduced Major Axis regression lines. (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 5. Same as Fig. 4 but for ACPC (Barsi et al., 2003) and the Split Window algorithm (Du et al., 2015) with two CWV ranges.
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3.4. Perspectives

Combining libRadtran and ERA5 atmospheric profiles can provide
single band WST products from L8/TIRS at high precision (< 0.7 K
unbiased RMSD) with low bias (near-zero) in cloud-free conditions. The
performance of the processing presented here, specifically the atmo-
spheric profiles, should be investigated in other sites worldwide. In situ
bulk water temperature data is widely available, but for better under-
standing the link between bulk and skin temperature in situ thermal
radiometers should be installed at validation sites, and perhaps also
linked with anemometers and measurements of long wave radiation
flux. The good performance of the WST product presented here opens
possibilities for applications of high resolution near-shore water tem-
perature retrieval, e.g. for monitoring river plumes, thermal pollution
by factories and power plants, the assessment of coral bleaching and

harmful algal bloom risks, and validation of hydrodynamical models.
The SW approach provided similar unbiased RMSD results to the single
band approach in the present study, but a much larger MD, indicating a
large systematic bias which may be due to the calibration of the SW
algorithm over man-made (urban) targets by Du et al. (2015). A re-
calibration of the SW algorithm for natural materials (specifically water
for deriving WST) may improve the SW results, but is out of scope for
the present paper. SW approaches may also be negatively affected by
calibration issues in both bands, in the case of L8/TIRS specifically the
stray light issues experienced with B11, and future multi-band missions
should be carefully designed and characterised.

The present study shows the performances (better than 1 K) that can
be achieved with a single band on L8/TIRS, and a method that may be
extended to single band missions past and future. If the single band
performance presented here is sufficient for the intended application,
perhaps future missions can be made cheaper by including only a single
band. Reliable atmospheric profiles can be retrieved from the ERA5
global reanalysis dataset at 0.25°, which is currently available from
1979 to the present. This opens up the applicability of the single band
processing to older Landsat sensors, the Thematic Mapper on Landsat 5
(1984–2011) and the Enhanced Thematic Mapper on Landsat 7 (1999-
present) for long term change detection. The methods presented in
Section 2.3 and Appendix A are generic and can be applied to any
mission, and can be adapted to Land Surface Temperature retrieval with
a suitable source of per-pixel emissivity. As demonstrated in this paper,
the combination of the VNIR and SWIR data from L8/OLI allows for a
robust automated land and cloud masking. The use of coincident optical
multi-spectral data could be further extended from quality control to
emissivity estimation, e.g. based on existing spectral libraries.

4. Conclusions

• Water Surface Temperature can be accurately retrieved from single
band Landsat 8/TIRS imagery. In cloud-free conditions, the RMSD
between in situ buoy and satellite measurements are 0.7 K for Band
10 and 1 K for Band 11, with low biases of< 0.1 K and< 0.3 K
respectively. For images with scattered clouds, the RMSD increases
to 1 K and 2 K and the bias for both bands increases to −0.5 K, likely
due to cloud proximity. A similar performance was found using
underway shipborne measurements of temperature, comprehen-
sively demonstrating Landsat's capability of tracking smaller scale
temperature variability.
• The open source libRadtran model can be used as a robust alter-
native to MODTRAN for radiative transfer in the thermal domain
with the aim of retrieving surface temperatures. Three sources of
atmospheric profiles give comparable results, although lowest errors
are found for NCEP/GDAS and ECMWF/ERA5. ACPC gave similar
RMSD but larger MD than libRadtran using the same NCEP/GDAS

Fig. 6. Matchups of the libRadtran/ERA5 setup with Belgica/ODAS underway
data for different time ranges. Matchups are from 6 images, and the gap be-
tween warm and cold waters is caused by the seasonal distribution of the
matchup data. Statistics are given for the full dataset + - 12 h from the over-
pass, and in cumulative form in Table 5.

Table 5
Cumulative matchup results for the libRadtran/ERA5 setup with Belgica/ODAS
underway data. The first column shows the maximum time difference between
the satellite overpass and in situ measurement.

T (h) n m b (°C) r2 RMSD (°C) MD (°C) unb-RMSD (°C)

0.25 15 0.990 0.086 0.987 0.549 −0.042 0.547
0.5 32 0.995 0.029 0.987 0.549 −0.034 0.548
1 64 0.995 0.026 0.987 0.541 −0.036 0.540
2 125 1.000 −0.040 0.987 0.551 −0.038 0.549
4 226 1.016 −0.194 0.983 0.631 0.020 0.630
8 406 1.030 −0.359 0.983 0.630 0.025 0.630
12 619 1.027 −0.345 0.982 0.661 0.009 0.661

Fig. 7. Two of the more complete tracks of Belgica/ODAS underway data and L8/TIRS temperature, with temperature difference ( T=satellite-in situ) plotted at the
sampling locations. White areas denote missing data due to non-water masking and swath edge. Note the undetected thin clouds (cold areas) on the 2015-03-10
image.

Q. Vanhellemont Remote Sensing of Environment 237 (2020) 111518

7



profiles. With the datasets used here, the single band methods out-
performed a split-window approach, which had more than double
the RMSD and MD in comparison with in situ measurements. Since
the performance of B11 is here found to be acceptable, the cali-
bration coefficients of the split-window approach may need to be
revised.
• A multi-temporal land masking method using OLI data is demon-
strated in order to estimate image cloud fraction over water pixels.
An overall better matchup performance is found for scenes with low
cloud cover percentage over water. This method can be used for
generating sensor and projection specific land masks suitable for
other applications such as turbidity and chlorophyll a mapping from
Landsat or Sentinel-2 imagery.
• The method presented here is also suited for temperature retrieval
over non-water targets, including e.g. urban, agricultural and
forested areas, but also the Antarctic ice sheet and ice-free regions, if
suitable methods to determine per-pixel emissivity can be estab-
lished e.g. from the concomitant OLI data. The method is highly
automated, globally applicable, and the processing software will be
made freely available.
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Appendix A. Full tile processing

Landsat scenes are distributed in approximately 185 × 180 km tiles in the WRS-2 grid, and for full or merged tile processing, a spatially resolved
atmosphere may be more appropriate. In this appendix, the use of ERA5 0.25° grids for resolved full tile processing is examined (ERA5-R). The hourly
ERA5 grids bounding the satellite overpass time are extracted for all grid cells required for a smooth interpolation over the scene (Fig. A1, left panel),
and for each grid cell the three required libRadtran runs are performed to derive τ, Lu, and Ld. The two hourly grids of these parameters are then
interpolated to the satellite overpass time (Fig. A1, right panel). The per-cell parameters are then linearly interpolated to form a per-pixel full-tile
dataset (Fig. A2). The matchup exercise is repeated using the ERA5-R processing. The performance between the single profile runs (ERA5, Table 3)
and the resolved atmosphere (ERA5-R, A1) is practically the same due to the small size of the ROI - about 0.4° in latitude, and 1° in longitude.

Fig. A1. A WRS-2 path/row 199/024 tile over the BCZ on 2019-02-26 with (left) the tile edges in red and ERA5 grid cells in blue, and (right) the temporally
interpolated B10 Lu results.

Fig. 8. Transects from the points shown in Fig. 8. Gaps in the Landsat transect are caused by cloud cover (left) and swath edge (right).
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Fig. A2. The 2019-02-26 L8/TIRS image over the BCZ with (left) top-of-atmosphere radiance in B10 (Lt), and (right) the full tile resolved atmospheric upwelling
radiance in B10 (Lu) derived from ERA5 profiles.

Table A1
Same as Table 3 but for the ERA5-R processing with spatially resolved atmosphere, for the datasets with< 5% and 5–50% masked water pixels.

Dataset Band n m b (°C) r2 RMSD (°C) MD (°C) unb-RMSD
(°C)

< 5% 10 329 1.012 −0.090 0.983 0.699 0.071 0.695
11 329 1.035 −0.123 0.968 1.038 0.360 0.974

5–50% 10 294 1.010 −0.661 0.969 0.901 −0.512 0.741
11 294 1.027 −0.817 0.949 1.054 −0.433 0.961

References

Alappattu, D.P., Wang, Q., Yamaguchi, R., Lind, R.J., Reynolds, M., Christman, A.J.,
2017. Warm layer and cool skin corrections for bulk water temperature measure-
ments for air-sea interaction studies. J. Geophys. Res.: Oceans 122 (8), 6470–6481.

Anderson, M., Gao, F., Knipper, K., Hain, C., Dulaney, W., Baldocchi, D., Eichelmann, E.,
Hemes, K., Yang, Y., Medellin-Azuara, J., et al., 2018. Field-scale assessment of land
and water use change over the California Delta using remote sensing. Remote Sens.
10 (6), 889.

Anderson, M.C., Allen, R.G., Morse, A., Kustas, W.P., 2012. Use of Landsat thermal
imagery in monitoring evapotranspiration and managing water resources. Remote
Sens. Environ. 122, 50–65.

Baeye, M., Fettweis, M., Voulgaris, G., Van Lancker, V., 2011. Sediment mobility in re-
sponse to tidal and wind-driven flows along the Belgian inner shelf, southern North
Sea. Ocean Dyn. 61 (5), 611–622.

Barsi, J., Schott, J., Hook, S., Raqueno, N., Markham, B., Radocinski, R., 2014. Landsat-8
thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sens. 6
(11), 11607–11626.

Barsi, J.A., Barker, J.L., Schott, J.R., 2003. An atmospheric correction parameter calcu-
lator for a single thermal band earth-sensing instrument. In: IGARSS 2003. 2003 IEEE
International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat.
No. 03CH37477), vol 5. IEEE, pp. 3014–3016.

Barsi, J.A., Schott, J.R., Palluconi, F.D., Hook, S.J., 2005. Validation of a web-based at-
mospheric correction tool for single thermal band instruments. In: Earth Observing
Systems X, vol 5882. International Society for Optics and Photonics, pp. 58820E.

Berk, A., Anderson, G.P., Bernstein, L.S., Acharya, P.K., Dothe, H., Matthew, M.W., Adler-
Golden, S.M., Chetwynd Jr., J.H., Richtsmeier, S.C., Pukall, B., et al., 1999.
MODTRAN4 radiative transfer modeling for atmospheric correction. In: Optical
Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research
III, vol 3756. International Society for Optics and Photonics, pp. 348–353.

Brando, V., Braga, F., Zaggia, L., Giardino, C., Bresciani, M., Matta, E., Bellafiore, D.,
Ferrarin, C., Maicu, F., Benetazzo, A., et al., 2015. High-resolution satellite turbidity
and sea surface temperature observations of river plume interactions during a sig-
nificant flood event. Ocean Sci. 11 (6), 909.

Brewin, R., Smale, D., Moore, P., Dall'Olmo, G., Miller, P., Taylor, B., Smyth, T., Fishwick,
J., Yang, M., 2018. Evaluating operational AVHRR sea surface temperature data at
the coastline using benthic temperature loggers. Remote Sens. 10 (6), 925.

Brewin, R.J., de Mora, L., Billson, O., Jackson, T., Russell, P., Brewin, T.G., Shutler, J.D.,
Miller, P.I., Taylor, B.H., Smyth, T.J., et al., 2017. Evaluating operational AVHRR sea
surface temperature data at the coastline using surfers. Estuar. Coast Shelf Sci. 196,
276–289.

Burrows, M.T., Schoeman, D.S., Buckley, L.B., Moore, P., Poloczanska, E.S., Brander,
K.M., Brown, C., Bruno, J.F., Duarte, C.M., Halpern, B.S., et al., 2011. The pace of
shifting climate in marine and terrestrial ecosystems. Science 334 (6056), 652–655.

Cao, B., Liu, Q., Du, Y., Roujean, J.-L., Gastellu-Etchegorry, J.-P., Trigo, I.F., Zhan, W., Yu,
Y., Cheng, J., Jacob, F., et al., 2019. A review of earth surface thermal radiation
directionality observing and modeling: historical development, current status and
perspectives. Remote Sens. Environ. 232 111304.

Caselles, V., Rubio, E., Coll, C., Valor, E., 1998. Thermal band selection for the PRISM

instrument: 3. Optimal band configurations. J. Geophys. Res.: Atmosph. 103 (D14),
17057–17067.

Cherif, E.K., Salmoun, F., Mesas-Carrascosa, F.J., et al., 2019. Determination of bathing
water quality using thermal images Landsat 8 on the west coast of tangier: pre-
liminary results. Remote Sens. 11 (8), 972.

Cheung, W.W., Lam, V.W., Sarmiento, J.L., Kearney, K., Watson, R., Pauly, D., 2009.
Projecting global marine biodiversity impacts under climate change scenarios. Fish
Fish. 10 (3), 235–251.

Cook, M., Schott, J., Mandel, J., Raqueno, N., 2014. Development of an operational ca-
libration methodology for the Landsat thermal data archive and initial testing of the
atmospheric compensation component of a Land Surface Temperature (LST) product
from the archive. Remote Sens. 6 (11), 11244–11266.

Doney, S.C., Ruckelshaus, M., Emmett Duffy, J., Barry, J.P., Chan, F., English, C.A.,
Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., et al., 2012. Climate
change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37.

Donlon, C., Minnett, P.J., Gentemann, C., Nightingale, T., Barton, I., Ward, B., Murray,
M., 2002. Toward improved validation of satellite sea surface skin temperature
measurements for climate research. J. Clim. 15 (4), 353–369.

Donlon, C., Nightingale, T., Sheasby, T., Turner, J., Robinson, I., Emergy, W., 1999.
Implications of the oceanic thermal skin temperature deviation at high wind speed.
Geophys. Res. Lett. 26 (16), 2505–2508.

Du, C., Ren, H., Qin, Q., Meng, J., Zhao, S., 2015. A practical split-window algorithm for
estimating land surface temperature from Landsat 8 data. Remote Sens. 7 (1),
647–665.

Emde, C., Buras-Schnell, R., Kylling, A., Mayer, B., Gasteiger, J., Hamann, U., Kylling, J.,
Richter, B., Pause, C., Dowling, T., et al., 2016. The libRadtran software package for
radiative transfer calculations (version 2.0. 1). Geosci. Model Dev. (GMD) (5),
1647–1672.

Franz, B.A., Bailey, S.W., Kuring, N., Werdell, P.J., 2015. Ocean color measurements with
the operational land imager on landsat-8: implementation and evaluation in SeaDAS.
J. Appl. Remote Sens. 9 (1) 096070–096070.

Gerace, A., Montanaro, M., 2017. Derivation and validation of the stray light correction
algorithm for the thermal infrared sensor onboard Landsat 8. Remote Sens. Environ.
191, 246–257.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google
earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ.
202, 18–27.

Irons, J.R., Dwyer, J.L., Barsi, J.A., 2012. The next Landsat satellite: the Landsat data
continuity mission. Remote Sens. Environ. 122, 11–21.

Malakar, N.K., Hulley, G.C., Hook, S.J., Laraby, K., Cook, M., Schott, J.R., 2018. An op-
erational land surface temperature product for Landsat thermal data: methodology
and validation. IEEE Trans. Geosci. Remote Sens. 56 (10), 5717–5735.

Malardel, S., Wedi, N., Deconinck, W., Diamantakis, M., Kühnlein, C., Mozdzynski, G.,
Hamrud, M., Smolarkiewicz, P., 2016. A new grid for the IFS. ECMWF Newslett. 146,
23–28.

Manzo, C., Federica, B., Luca, Z., Ernesto, B.V., Claudia, G., Mariano, B., Cristiana, B.,
2018. Spatio-temporal analysis of prodelta dynamics by means of new satellite
generation: the case of Po river by Landsat-8 data. Int. J. Appl. Earth Obs. Geoinf. 66,
210–225.

Mayer, B., Kylling, A., 2005. The libRadtran software package for radiative transfer

Q. Vanhellemont Remote Sensing of Environment 237 (2020) 111518

9

http://refhub.elsevier.com/S0034-4257(19)30537-1/sref1
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref1
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref1
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref2
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref2
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref2
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref2
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref3
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref3
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref3
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref4
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref4
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref4
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref5
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref5
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref5
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref6
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref6
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref6
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref6
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref7
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref7
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref7
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref8
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref8
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref8
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref8
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref8
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref9
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref9
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref9
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref9
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref10
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref10
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref10
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref11
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref11
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref11
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref11
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref12
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref12
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref12
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref13
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref13
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref13
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref13
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref14
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref14
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref14
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref15
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref15
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref15
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref16
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref16
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref16
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref17
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref17
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref17
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref17
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref18
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref18
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref18
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref19
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref19
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref19
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref20
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref20
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref20
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref21
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref21
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref21
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref22
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref22
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref22
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref22
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref23
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref23
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref23
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref24
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref24
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref24
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref25
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref25
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref25
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref26
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref26
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref27
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref27
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref27
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref28
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref28
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref28
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref29
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref29
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref29
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref29
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref30


calculations-description and examples of use. Atmos. Chem. Phys. 5 (7), 1855–1877.
Montanaro, M., Gerace, A., Lunsford, A., Reuter, D., 2014a. Stray light artifacts in ima-

gery from the Landsat 8 thermal infrared sensor. Remote Sens. 6 (11), 10435–10456.
Montanaro, M., Levy, R., Markham, B., 2014b. On-orbit radiometric performance of the

Landsat 8 thermal infrared sensor. Remote Sens. 6 (12), 11753–11769.
Neukermans, G., Oziel, L., Babin, M., 2018. Increased intrusion of warming Atlantic water

leads to rapid expansion of temperate phytoplankton in the Arctic. Glob. Chang. Biol.
24 (6), 2545–2553.

Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A.,
Clarke, L., Dahe, Q., Dasgupta, P., et al., 2014. Climate Change 2014: Synthesis
Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change. Ipcc.

Paerl, H., 2014. Mitigating harmful cyanobacterial blooms in a human-and climatically-
impacted world. Life 4 (4), 988–1012.

Paerl, H.W., Paul, V.J., 2012. Climate change: links to global expansion of harmful cya-
nobacteria. Water Res. 46 (5), 1349–1363.

Ruddick, K., Lacroix, G., 2006. Hydrodynamics and meteorology of the Belgian coastal
zone. In: Current Status Of Eutrophication In The Belgian Coastal Zone, pp. 1–15.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T.,
Chuang, H.-y., Iredell, M., et al., 2014. The ncep climate forecast system version 2. J.
Clim. 27 (6), 2185–2208.

Salgueiro, D., de Pablo, H., Nevesa, R., Mateus, M., 2015. Modelling the thermal effluent
of a near coast power plant (Sines, Portugal). Revista de Gestão Costeira Integrada-J.
Integr. Coast. Zone Manag. 15 (4), 533–544.

Schaeffer, B.A., Iiames, J., Dwyer, J., Urquhart, E., Salls, W., Rover, J., Seegers, B., 2018.
An initial validation of Landsat 5 and 7 derived surface water temperature for US
lakes, reservoirs, and estuaries. Int. J. Remote Sens. 39 (22), 7789–7805.

Schott, J.R., Hook, S.J., Barsi, J.A., Markham, B.L., Miller, J., Padula, F.P., Raqueno, N.G.,

2012. Thermal infrared radiometric calibration of the entire Landsat 4, 5, and 7 ar-
chive (1982–2010). Remote Sens. Environ. 122, 41–49.

Smit, A.J., Roberts, M., Anderson, R.J., Dufois, F., Dudley, S.F., Bornman, T.G., Olbers, J.,
Bolton, J.J., 2013. A coastal seawater temperature dataset for biogeographical stu-
dies: large biases between in situ and remotely-sensed data sets around the coast of
South Africa. PLoS One 8 (12), e81944.

Snyder, J., Boss, E., Weatherbee, R., Thomas, A., Brady, D., Newell, C., 2017. Oyster
aquaculture site selection using Landsat 8-derived Sea surface temperature, turbidity,
and chlorophyll a. Front. Mar. Sci. 4, 190.

Trinh, R.C., Fichot, C.G., Gierach, M.M., Holt, B., Malakar, N.K., Hulley, G., Smith, J.,
2017. Application of Landsat 8 for monitoring impacts of wastewater discharge on
coastal water quality. Front. Mar. Sci. 4, 329.

Vanhellemont, Q., 2019. Adaptation of the dark spectrum fitting atmospheric correction
for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens.
Environ. 225, 175–192.

Vanhellemont, Q., Ruddick, K., 2014. Turbid wakes associated with offshore wind tur-
bines observed with Landsat 8. Remote Sens. Environ. 145, 105–115.

Wan, Z., 2014. New refinements and validation of the collection-6 MODIS land-surface
temperature/emissivity product. Remote Sens. Environ. 140, 36–45.

Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., Zhao, S., 2015. An improved mono-
window algorithm for land surface temperature retrieval from Landsat 8 thermal
infrared sensor data. Remote Sens. 7 (4), 4268–4289.

Yang, J., Gong, P., Fu, R., Zhang, M., Chen, J., Liang, S., Xu, B., Shi, J., Dickinson, R.,
2013. The role of satellite remote sensing in climate change studies. Nat. Clim.
Chang. 3 (10), 875.

Zeng, X., Zhao, M., Dickinson, R.E., He, Y., 1999. A multiyear hourly sea surface skin
temperature data set derived from the TOGA TAO bulk temperature and wind speed
over the tropical Pacific. J. Geophys. Res.: Oceans 104 (C1), 1525–1536.

Q. Vanhellemont Remote Sensing of Environment 237 (2020) 111518

10

http://refhub.elsevier.com/S0034-4257(19)30537-1/sref30
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref31
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref31
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref32
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref32
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref33
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref33
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref33
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref34
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref34
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref34
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref34
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref35
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref35
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref36
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref36
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref37
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref37
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref38
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref38
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref38
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref39
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref39
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref39
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref40
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref40
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref40
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref41
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref41
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref41
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref42
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref42
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref42
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref42
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref43
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref43
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref43
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref44
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref44
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref44
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref45
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref45
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref45
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref46
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref46
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref47
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref47
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref48
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref48
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref48
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref49
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref49
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref49
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref50
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref50
http://refhub.elsevier.com/S0034-4257(19)30537-1/sref50

	Automated water surface temperature retrieval from Landsat 8/TIRS
	Introduction
	Data and methods
	In situ data
	Satellite data
	Surface temperature retrieval
	Image quality control

	Results and discussion
	Land masking
	Surface temperature
	Spatial consistency
	Perspectives

	Conclusions
	mk:H1_13
	Acknowledgments
	Full tile processing
	References




