Skip to content. | Skip to navigation

Personal tools

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

You are here: Home / PDFs on demand / Bibliographical References of PDFs on demand / The use of optics for the in situ determination of flocculated mud characteristics

A. Manning and K. Dyer (2002)

The use of optics for the in situ determination of flocculated mud characteristics

Journal of Optics a-Pure and Applied Optics, 4(4):S71-S81.

Morphodynamical predictive simulations of estuarine sediments require in situ mud floc data for model verification and calibration purposes. The limiting factor in many previous studies were the devices used for sampling, as flocs are very fragile. Instruments such as Niskin bottles, pipettes or the Owen tube are all very disruptive. This could be the reason that previous studies tended to show a much lower floc size range than is now known to exist. The presence of large estuarine macroflocs was observed by in situ photography and in situ laser particle size measurements, but these techniques still provided no indication of settling velocity or effective density, which are variable amongst floc populations. In contrast, the video camera based instrument developed at the University of Plymouth, INSSEV (in situ settling velocity), measures floc size, settling velocity and density all simultaneously. This operates whereby flocs are trapped in an upper decelerator chamber and then allowed to fall into a settling column located underneath. A Puffin model UTC 341 high resolution monochrome Pasecon tube video camera, fitted with a f/4 macro lens and integral low heat LED illumination, views the flocs through a window in the side of the settling column, and hence the floc characteristics can be obtained. The camera utilizes a back-illumination system (i.e. a silhouetting technique) in which particles appear dark on a light background; this reduces image smearing and makes the floc structure more clearly visible. A selection of INSSEV flocs are presented from deployments conducted in the upper Tamar Estuary during 1998. Low concentration neap tides revealed that optimum ambient flocculation conditions produced macroflocs approaching 0.75 mm in length and settling velocities of 4-5 mm s(-1). These macroflocs typically resembled 'comets' or 'long stringers'. However, these stringer configuration macroflocs were in the minority and on average only represented 30-40\% of the total suspended matter concentration. Throughout the more turbulent and higher concentration spring tides, INSSEV was found to be very effective at measuring floc characteristics, even within concentrated benthic suspension layers of 8 g l(-1). Ideal flocculation conditions (in terms of floc size) transformed 95\% of the ambient suspended particulate matter concentration present into large, fast settling, more rounded cluster-type macroflocs with settling velocities of 8-15 mm s(-1) and effective densities under 50 kg m(-3). A number of the smaller macroflocs had their. settling characteristics significantly improved by becoming interlinked with organic matter to form stringers with a string-of-pearls configuration. Although stringers we're seen to occur during both neap and spring tides, the former ambient conditions tended to produce stringers which were only a third of the size of those typically observed at springs, and thus the neap tide stringers had comparatively lower settling velocities.

Tamar estuary, flocs, turbulent shear stress, Flocculation, waters, INSSEV instrument, turbidity maximum, floc size, settling velocity, estuaries, effective density, suspended particulate matter, size
WOS:000177482900034
Year

1875 1876 1877 1878 1879
1880 1881 1882 1883 1884
1885 1886 1887 1888 1889
1890 1891 1892 1893 1894
1895 1896 1897 1898 1899

1900 1901 1902 1903 1904
1905 1906 1907 1908 1909
1910 1911 1912 1913 1914
1915 1916 1917 1918 1919
1920 1921 1922 1923 1924

1925 1926 1927 1928 1929
1930 1931 1932 1933 1934
1935 1936 1937 1938 1939
1940 1941 1942 1943 1944
1945 1946 1947 1948 1949

1950 1951 1952 1953 1954
1955 1956 1957 1958 1959
1960 1961 1962 1963 1964
1965 1966 1967 1968 1969
1970 1971 1972 1973 1974

1975 1976 1977 1978 1979
1980 1981 1982 1983 1984
1985 1986 1987 1988 1989
1990 1991 1992 1993 1994
1995 1996 1997 1998 1999

2000 2001 2002 2003 2004
2005 2006 2007 2008 2009
2010 2011 2012 2013 2014
2015 2016 2017 2018 2019
2020 2021 2022 2023 2024

 
e-ressources

 

PDFs on demand
 

 

 

RBINS private PDFs