Skip to content. | Skip to navigation

Personal tools

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

You are here: Home / PDFs on demand / Bibliographical References of PDFs on demand / Microbial stabilization of riverine sediments by extracellular polymeric substances

Sabine Gerbersdorf, Thomas Jancke, Bernhard Westrich and David Paterson (2008)

Microbial stabilization of riverine sediments by extracellular polymeric substances

Geobiology, 6(1):57-69.

Sediment stability is a critical component for the understanding of cohesive sediment dynamics. Traditionally, physico-chemical sediment conditions have been regarded as most important drivers of sediment stability. However, over the last decade, the stabilization of sediment by biological activity, particularly the influence of highly hydrated matrices of extracellular polymeric substances (EPS) has been given increasing attention. However, most studies have focused on the sediment/water interface and, usually, of marine systems. The present study exploits current knowledge of EPS dynamics from marine systems and applies it to freshwater habitats, also considering a wide range of biological and physico-chemical variables. Natural sediments were taken from a freshwater site with high levels of heavy metal pollution (Lauffen reservoir, River Neckar, Germany). Vertical profiles from the flocculent surface layer to depth of 50 cm within the sediment were investigated, monthly, over the course of year. Tubificidae and Chironomidae larvae constituted the majority of the macrofauna. Despite the turbidity of the water column, a highly diverse and abundant microphytobenthic community of diatoms (11-82 mu g g(-1) DW) was found at the sediment surface closely associated with high numbers of bacteria (10(9) cells g(-1) DW). The concentrations of all EPS moieties were remarkably high (0.1-0.5, 1.7-3.8, 0.9-5.2 mg g(-1) DW, for colloidal and bound carbohydrates and proteins, respectively) and levels were comparable to those determined in intertidal studies. The microalgal and bacterial biomass both showed strong correlations with the colloidal and bound EPS carbohydrate fractions. The data suggested that the present macrofauna as well as the metabolic activities of microalgae and bacteria interact with sedimentological factors to influence the properties of the sediment by binding fine-grained sediment, changing water content and enhancing the organic content through secretion products. The colloidal and bound EPS moieties showed strong correlation with the critical shear stress for erosion over sediment depth. It is suggested that the cohesive strength of the sediment was controlled by a high number of active adsorption sites and higher charge densities in fine grained sediments. The EPS network may significantly enhance this by embedding particles and permeating the void space but also in offering additional ionic binding sites and cross-linkages.

activated-sludge, cohesive sediments, littoral sediments, erosion rates, microphytobenthos, marine benthic diatoms, exopolymer production, carbohydrate concentrations, intertidal sediments, epipelic diatoms
WOS:000251860400006
Year

1875 1876 1877 1878 1879
1880 1881 1882 1883 1884
1885 1886 1887 1888 1889
1890 1891 1892 1893 1894
1895 1896 1897 1898 1899

1900 1901 1902 1903 1904
1905 1906 1907 1908 1909
1910 1911 1912 1913 1914
1915 1916 1917 1918 1919
1920 1921 1922 1923 1924

1925 1926 1927 1928 1929
1930 1931 1932 1933 1934
1935 1936 1937 1938 1939
1940 1941 1942 1943 1944
1945 1946 1947 1948 1949

1950 1951 1952 1953 1954
1955 1956 1957 1958 1959
1960 1961 1962 1963 1964
1965 1966 1967 1968 1969
1970 1971 1972 1973 1974

1975 1976 1977 1978 1979
1980 1981 1982 1983 1984
1985 1986 1987 1988 1989
1990 1991 1992 1993 1994
1995 1996 1997 1998 1999

2000 2001 2002 2003 2004
2005 2006 2007 2008 2009
2010 2011 2012 2013 2014
2015 2016 2017 2018 2019
2020 2021 2022 2023 2024

 
e-ressources

 

PDFs on demand
 

 

 

RBINS private PDFs