Skip to content. | Skip to navigation

Personal tools

 
 
Maps
 
Archives
     
Alma
Edition
 
                 
You are here: Home / PDFs on demand / Bibliographical References of PDFs on demand / The Freshwater Floc: A Functional Relationship of Water and Organic and Inorganic Floc Constituents Affecting Suspended Sediment Properties

I. Droppo, G. Leppard, D. Flannigan and S. Liss (1997)

The Freshwater Floc: A Functional Relationship of Water and Organic and Inorganic Floc Constituents Affecting Suspended Sediment Properties

Water, Air, and Soil Pollution, 99(1-4):43-54.

Flocculated fine-grained sediment is a complex matrix of microbial communities and organic (detritus, cellular debris and extracellular polymers) and inorganic material. Suspended flocs within any aquatic system play a significant ecological role as they can regulate the overall water quality through their physical, chemical and/or biological activity. This paper investigates the complex structural matrix of riverine flocs over a large range of magnifications using correlative microscopic techniques. The significance of floc structural characteristics [(size, shape, porosity, density, inorganic composition, organic composition (bacteria and fibrils)] on the physical (eg. transport and settling), chemical (eg. adsorbing/transforming contaminants and nutrients), and biological (eg. biotransformation and habitat development) behaviour of a floc is investigated. Results suggest that it is the floc's internal structure that has a significant impact on controlling the above floc behaviours. This internal structure is complex and is often dominated by the existence of a three-dimensional matrix of fibrillar material secreted by the active microbial community within the floc. This matrix, in conjunction with the inorganic and bioorganic (active and inactive) constituents of a floc, provides an intricate pore structure that may result in water being an important bound component of a floc. These complex interactive structural and functional properties of a floc are considered to influence a floc's behaviour both physically in how it is transported or settled, chemically in how it adsorbs/transforms contaminants and nutrients, and biologically in how it develops a diverse microhabitat capable of modifying the structural, chemical and biological makeup of the floc.

Year

1875 1876 1877 1878 1879
1880 1881 1882 1883 1884
1885 1886 1887 1888 1889
1890 1891 1892 1893 1894
1895 1896 1897 1898 1899

1900 1901 1902 1903 1904
1905 1906 1907 1908 1909
1910 1911 1912 1913 1914
1915 1916 1917 1918 1919
1920 1921 1922 1923 1924

1925 1926 1927 1928 1929
1930 1931 1932 1933 1934
1935 1936 1937 1938 1939
1940 1941 1942 1943 1944
1945 1946 1947 1948 1949

1950 1951 1952 1953 1954
1955 1956 1957 1958 1959
1960 1961 1962 1963 1964
1965 1966 1967 1968 1969
1970 1971 1972 1973 1974

1975 1976 1977 1978 1979
1980 1981 1982 1983 1984
1985 1986 1987 1988 1989
1990 1991 1992 1993 1994
1995 1996 1997 1998 1999

2000 2001 2002 2003 2004
2005 2006 2007 2008 2009
2010 2011 2012 2013 2014
2015 2016 2017 2018 2019
2020 2021 2022 2023 2024

 
e-ressources

 

PDFs on demand
 

 

 

RBINS private PDFs