Skip to content. | Skip to navigation

Personal tools

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

You are here: Home / PDFs on demand / Bibliographical References of PDFs on demand / Understanding the export of biogenic particles in oceanic waters: Is there consensus?

P. Boyd and T. Trull (2007)

Understanding the export of biogenic particles in oceanic waters: Is there consensus?

Progress in Oceanography, 72(4):276-312.

We examine progress towards a global view of oceanic export of particulate organic carbon (POC) and other nutrient elements (P, N, Si) from the surface (upper 100m), through the subsurface, to the deep sea (1000m), focusing on syntheses published since 1999 and on the Joint Global Ocean Flux Study. Food-web structure is important, and surface and subsurface processes contribute similarly to determine the fraction of net primary production (NPP) reaching the deep sea. NPP by large cells generally favours high surface export of POC. Preferential remineralization of P and N (versus C) with depth is common, as is regional variation in subsurface POC flux attenuation. The role of mineral fluxes is complex. Annual mean fluxes of POC and minerals are correlated in global deep sediment trap records, but causality and the relative importance of different minerals depends on the assumptions made. Time-series observations at single sites can oppose the geographic trends, and their large seasonal variability in the contribution of POC to total flux is at odds with mechanistic models for POC transport by minerals. Despite generally positive correlations between biogenic carbonate and POC fluxes, the overall role of carbonate export is to decrease the transfer of carbon dioxide from the atmosphere to the ocean. Both autotrophs and heterotrophs produce minerals, and progress in separating these contributions is required for the deconvolution of mineral ballast and food-web effects. Many recent models suggest global surface POC export of ∼10GTC/yr, despite widely varying biological complexity. This limits the usefulness of their prediction of ecosystem and carbon cycle responses to global change. Progress requires better observations for model validation, and more efforts to relate the models to the observed complexity, rather than to overly simplified global syntheses. We advocate more time-series stations targeting under-studied biogeochemical regions, development of automated in situ tools for study of the subsurface ocean, and increased emphasis on combining ecological and biogeochemical methods.

Biogenic particles vertical carbon export, Ocean biogeochemistry
Year

1875 1876 1877 1878 1879
1880 1881 1882 1883 1884
1885 1886 1887 1888 1889
1890 1891 1892 1893 1894
1895 1896 1897 1898 1899

1900 1901 1902 1903 1904
1905 1906 1907 1908 1909
1910 1911 1912 1913 1914
1915 1916 1917 1918 1919
1920 1921 1922 1923 1924

1925 1926 1927 1928 1929
1930 1931 1932 1933 1934
1935 1936 1937 1938 1939
1940 1941 1942 1943 1944
1945 1946 1947 1948 1949

1950 1951 1952 1953 1954
1955 1956 1957 1958 1959
1960 1961 1962 1963 1964
1965 1966 1967 1968 1969
1970 1971 1972 1973 1974

1975 1976 1977 1978 1979
1980 1981 1982 1983 1984
1985 1986 1987 1988 1989
1990 1991 1992 1993 1994
1995 1996 1997 1998 1999

2000 2001 2002 2003 2004
2005 2006 2007 2008 2009
2010 2011 2012 2013 2014
2015 2016 2017 2018 2019
2020 2021 2022 2023 2024

 
e-ressources

 

PDFs on demand
 

 

 

RBINS private PDFs